Mythological VI
Description
有\(1...n\)一共\(n\)个数。保证\(n\)为偶数。
小M要把这\(n\)个数两两配对, 一共配成\(n/2\)对。每一对的权值是他们两个数的和。
小M想要知道这\(n\)对里最大的权值的期望是多少。可怜的小M当然不知道啦,所以她向你求助。
请输出答案对\(10^9+7\)取模的值。
Input
一行一个正整数,表示\(n\)。
Output
一行一个整数,表示答案对\(10^9+7\)取模的值。
Sample Input
4
Sample Output
6
HINT
对于20%的数据, \(n\leq 10\)。
对于40%的数据, \(n\leq 2*10^3\)。
对于100%的数据, \(n\leq 5*10^5\)。
Solution
首先可能的最大值最大为\(n+(n-1)=2n-1\)
考虑能不能枚举最大值\(v\),算出最大值等于每个\(v\)时的方案数,除以总方案数得到概率,再算出期望。
观察得出\(v\in [n+1,2n-1]\),所以只要在这个区间内枚举即可。
可是考虑到计算最大值恰好等于\(v\)的方案数不是很可行,于是我们看看能不能转化成先求前缀和:\(g[i]\)表示最大值小于等于\(v\)的方案数是多少。自然地,最大值等于\(v\)时的方案数为\(g_v-g_{v-1}\)。
下面看怎么求\(g_v\),记\(a=\lfloor \frac v 2 \rfloor\):
首先这\(n\)个数中,有些比较特别:\((a,n]\)这些数,必须选择位于\([1,a]\)中的数,否则最大值可能超过\(v\)。那就先考虑这些数的匹配方法。
先看看\(n\)有多少种选法:\(n\)必须和\([1,v-n]\)中的数匹配,共\(v-n\)种选择。
\(n-1\)呢?必须和\([1,v-(n-1)]\)中的数匹配,共\(v-n+1\)种选择;但是\(n\)已经从\([1,v-n]\)挑走了一个数,所以总选择方案减1,仍然是\(v-n\)种选择。
由此从大到小考虑\((a,n]\),发现每个数的可选择方案都是\(v-n\),那么为\((x,n]\)共\(n-a\)个数选择好匹配的总方案数为\((v-n)^{n-a}\)。
此时\([1,a]\)个数中已有\(n-a\)个数被挑走做匹配了,剩下\(a-(n-a)=2a-n\)个数,由于它们都小于等于\(a\),所以剩下的数可以任意匹配而不会出现一对数权值之和大于\(v\)的情况。
记\(f(x)\)表示\(x\)个点任意两两匹配的方案数,推一推就得知\(f(x)=f(x-2)*(x-1)\),意思就是一个点从其他\(x-1\)个点挑一个,移除这两个点后继续操作。
则剩下的数的方案为\(f(2a-n)\)。
所以\(g_v=(v-n)^{n-a}*f(2a-n)\)。
总方案数是多少?可以理解为\(g_{2n}\),也可以理解为\(f(n)\),总之就是完全没有限制时的方案数。
有了\(g\)数组,就可以算出对于最大值为\([n+1,2n-1]\)时的方案数,除以总方案数算出每个最大值出现的概率,最后就可以算出期望了。
#include <cstdio>
using namespace std;
const int mod=1e9+7;
const int N=500010;
int n,f[N*2],g[N*2];
inline int pow(int x,int y){
int res=1;
for(;y;x=1LL*x*x%mod,y>>=1)
if(y&1) res=1LL*res*x%mod;
return res;
}
int main(){
scanf("%d",&n);
f[0]=1;
for(int i=2;i<=n;i+=2) f[i]=1LL*f[i-2]*(i-1)%mod;
for(int v=n+1;v<=n*2;v++)
g[v]=1LL*pow(v-n,n-v/2)*f[v/2-(n-v/2)]%mod;
int ans=0;
for(int v=n+1;v<=n*2;v++)
(ans=ans+1LL*(g[v]-g[v-1])*v%mod)%=mod;
ans=1LL*ans*pow(g[n*2],mod-2)%mod;
printf("%d\n",ans<0?ans+mod:ans);
return 0;
}
Mythological VI的更多相关文章
- 【XSY2786】Mythological VI 数学
题目描述 有\(1\sim n\)一共\(n\)个数.保证\(n\)为偶数. 你要把这\(2n\)个数两两配对,一共配成\(n\)对.每一对的权值是他们两个数的和. 你想要知道这\(n\)对里最大的权 ...
- 在docker容器中vi指令找不到
在使用docker容器时,有时候里边没有安装vi,敲vi命令时提示说:vi: command not found,这个时候就需要安装vi,可是当你敲apt-get install vi命令时,提示: ...
- linux vi 命令大全
进入vi的命令 vi filename :打开或新建文件,并将光标置于第一行首 vi +n filename :打开文件,并将光标置于第n行首 vi + filename :打开文件,并将光标置于最后 ...
- Cygwin中解决vi编辑器方向键和Backspace键不好使、安装vim的方法
修改.virc文件(如果没有就创建)vi .virc 添加以下内容set nocpset backspace=start,indent,eol 保存退出:wq 如果是vim就修改.vimrc文件. 由 ...
- vi(vim)键盘图及其基本命令
进入vi vi filename 打开或新建文件,并将光标置于第一行首 vi +n filename 打开文件,并将光标置于第 n行首 vi + fi ...
- vi安装Vundle+YouCompleteMe+注释快捷'scrooloose/nerdcommenter'
Vundle is short for Vim bundle and is a Vim plugin manager. 从git上下载vundle $ git clone https://github ...
- vi学习总结
1.模式 命令行模式:光标的移动.内容删除移动复制操作 插入模式:文字输入,即编辑状态 底行模式:文件保存或退出vi,设置编辑环境 2.基本操作 vi myfile,输入vi 文件名,,则进入vi. ...
- vim(vi)常用操作及记忆方法
vi(vim)可以说是linux中用得最多的工具了,不管你配置服务也好,写脚本也好,总会用到它.但是,vim作为一个“纯字符”模式下的工具,它的操作和WINDOWS中的文本编辑工具相比多少有些复杂.这 ...
- vim vi Ubuntu
在vi编辑模式下按退格键不能删除内容,按方向键不能上下左右移动?如果是则:1. 在vi里非编辑模式下按冒号进入到末行命令模式,然后输入set nocompatible,回车,然后在进入vi编辑模式,看 ...
随机推荐
- oracle数据库之rownum和rowid用法
Rownum 和 Rowid是Oracle数据库所特有的,通过他们可以查询到指定行数范围内的数据记录. 以下通过例子讲解: -- 为了方便,首先,查找dept表中的所有. select deptn ...
- SecureCRT SSH连接一直提示密码错误
这是解决方法: http://www.linuxidc.com/Linux/2016-09/134925.htm
- Virtual DOM的简单实现
了解React的同学都知道,React提供了一个高效的视图更新机制:Virtual DOM,因为DOM天生就慢,所以操作DOM的时候要小心翼翼,稍微改动就会触发重绘重排,大量消耗性能. 1.Virtu ...
- 导出excel失败,提示提示加载类型库/DDL出错
首先,这里提供的解决办法仅适用于出现如下异常的情况:无法将类型为“Microsoft.Office.Interop.Excel.ApplicationClass”的 COM 对象强制转换为接口类型“M ...
- Scrum Meeting 10.22
Scrum Meeting No.2 今天的主要任务是配置安卓开发环境,并运行上一届的项目. 主流的安卓开发环境有eclipse+ADT+SDK和android studio两种.两种环境的文件架构似 ...
- 实验1 熟悉Linux开发环境 实验报告
参见http://www.cnblogs.com/lhc-java/p/4970269.html
- java(系统)实战1
在简单学习了java的布局和一些界面的绘制方法后,我便开始有了跟着视频和书本的知识学做一个简单的餐饮系统,才能激发自己的编程和不断巩固知识. 我简单说明一下本次做的系统很普通但具有实用性,是通过jav ...
- Chapter 6 面向对象基础
面向对象=对象+类+继承+通信,如果一个软件系统采用这些概念来建立模型并给予实现,那么它就是面向对象的.面向对象的软件工程方法是面向对象方法在软件工程领域的全面运用涉及到从面向对象分析.面向对象设计. ...
- 文献:Technology-related Disasters:A Survey toward Disaster-resilient Software Defined Networks
DISASTER的定义和影响(本文中) 定义范围: 自然灾害,比如洪水.地震等造成一定范围类的节点故障: 恶意攻击,DDOS攻击或者电磁脉冲攻击造成节点故障: 技术相关的问题,配置错误或者误操作等: ...
- 对it行业的一些看法
随着世界产业转移的加速,欧美.日本等发达国家将大量的软件开发业务转移到中国.印度等国家,随之而来的是这些国家对it人才的急切需求! 对比国内的大学生就业形势而言,无疑是it相关专业的毕业生就业压力较少 ...