Problem Description

An undirected graph is a graph in which the nodes are connected by undirected arcs. An undirected arc is an edge that has no arrow. Both ends of an undirected arc are equivalent--there is no head or tail. Therefore, we represent an edge in an undirected graph as a set rather than an ordered pair.

Now given an undirected graph, you could delete any number of edges as you wish. Then you will get one or more connected sub graph from the original one (Any of them should have more than one vertex).

You goal is to make all the connected sub graphs exist the Hamiltonian circuit after the delete operation. What’s more, you want to know the minimum sum of all the weight of the edges on the “Hamiltonian circuit” of all the connected sub graphs (Only one “Hamiltonian circuit” will be calculated in one connected sub graph! That is to say if there exist more than one “Hamiltonian circuit” in one connected sub graph, you could only choose the one in which the sum of weight of these edges is minimum).

For example, we may get two possible sums:

(1) 7 + 10 + 5 = 22

(2) 7 + 10 + 2 = 19

(There are two “Hamiltonian circuit” in this graph!)

Input

In the first line there is an integer T, indicates the number of test cases. (T <= 20)

In each case, the first line contains two integers n and m, indicates the number of vertices and the number of edges. (1 <= n <=1000, 0 <= m <= 10000)

Then m lines, each line contains three integers a,b,c ,indicates that there is one edge between a and b, and the weight of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1 <= c <= 10000)

Output

Output “Case %d: “first where d is the case number counted from one. Then output “NO” if there is no way to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation. Otherwise, output the minimum sum of weight you may get if you delete the edges in the optimal strategy.

Sample Input

3

3 4

1 2 5

2 1 2

2 3 10

3 1 7

3 2

1 2 3

1 2 4

2 2

1 2 3

1 2 4

Sample Output

Case 1: 19

Case 2: NO

Case 3: 6

Hint

In Case 1:

You could delete edge between 1 and 2 whose weight is 5.

In Case 2:

It’s impossible to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation.

Description(CHN)

有n个点和m条边,你可以删去任意条边,使得所有点在一个哈密顿路径上,路径的权值得最小。

Solution

实际上就是找有向图最小权环覆盖

经典套路,一个点拆成入点和出点,如果有 \(u\) 到 \(v\) 的边,那么将 \(u\) 的出点连向 \(v\) 的入点

那么变成了一个二分图,这个二分图的一个完美匹配就是原图中的一个环覆盖

如果边有权,要求最小或最大,其实就是二分图最大权匹配

跑费用流即可

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000+10,MAXM=10000+10,inf=2147483647;
int T,tn,n,m,e=1,answas,beg[MAXN<<1],nex[MAXM<<3],to[MAXM<<3],cap[MAXM<<3],cur[MAXN<<1],p[MAXN<<1],s,t,vis[MAXN<<1],clk,G[MAXN][MAXN];
ll was[MAXM<<2],level[MAXN<<2];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int w)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=w;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-w;
}
inline bool bfs()
{
for(register int i=1;i<=t;++i)level[i]=inf;
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==(level[x]+was[i]))
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
answas+=f*was[i];
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int MCMF()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(T);
while(T--)
{
printf("Case %d: ",++tn);
e=1;memset(beg,0,sizeof(beg));clk=0;
answas=0;
read(n);read(m);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)G[i][j]=inf;
for(register int i=1;i<=m;++i)
{
int u,v,k;read(u);read(v);read(k);
chkmin(G[u][v],k),chkmin(G[v][u],k);
}
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)
if(G[i][j]!=inf)insert(j,i+n,1,G[i][j]);
s=n+n+1,t=s+1;
for(register int i=1;i<=n;++i)insert(s,i,1,0),insert(i+n,t,1,0);
if(MCMF()!=n)puts("NO");
else write(answas,'\n');
}
return 0;
}

【刷题】HDU 3435 A new Graph Game的更多相关文章

  1. hdu 3435 A new Graph Game

    http://acm.hdu.edu.cn/showproblem.php?pid=3435 #include <cstdio> #include <iostream> #in ...

  2. HDU 3435 A new Graph Game(最小费用流:有向环权值最小覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3435 题意:有n个点和m条边,你可以删去任意条边,使得所有点在一个哈密顿路径上,路径的权值得最小. 思路: 费用 ...

  3. HDU 3435 A new Graph Game(最小费用最大流)&amp;HDU 3488

    A new Graph Game Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. 【HDU 3435】 A new Graph Game (KM|费用流)

    A new Graph Game Problem Description An undirected graph is a graph in which the nodes are connected ...

  5. HDU 自动刷题机 Auto AC (轻轻松松进入HDU首页)

    前言: 在写这篇文章之前,首先感谢给我思路以及帮助过我的学长们 以下4篇博客都是学长原创,其中有很多有用的,值得学习的东西,希望能够帮到大家! 1.手把手教你用C++ 写ACM自动刷题神器(冲入HDU ...

  6. 手把手教你用C++ 写ACM自动刷题神器(冲入HDU首页)

    转载注明原地址:http://blog.csdn.net/nk_test/article/details/49497017 少年,作为苦练ACM,通宵刷题的你 是不是想着有一天能够荣登各大OJ榜首,俯 ...

  7. 教你用python写:HDU刷题神器

    声明:本文以学习为目的,请不要影响他人正常判题 HDU刷题神器,早已被前辈们做出来了,不过没有见过用python写的.大一的时候见识了学长写这个,当时还是一脸懵逼,只知道这玩意儿好屌-.时隔一年,决定 ...

  8. 【刷题】HDU 2222 Keywords Search

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...

  9. NOIp2018停课刷题记录

    Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...

随机推荐

  1. int str input的运用

  2. ReLU——Deep Sparse Rectifier Neural Networks

    1. 摘要 ReLU 相比 Tanh 能产生相同或者更好的性能,而且能产生真零的稀疏表示,非常适合自然就稀疏的数据. 采用 ReLU 后,在大量的有标签数据下,有没有无监督预训练模型取得的最好效果是一 ...

  3. 作业 20181127-3 互评Beta版本

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2448 组名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙赛佳 ...

  4. TCP 连接管理

    实验代码和内容:https://github.com/ZCplayground/Understanding-Unix-Linux-Programming/tree/master/11.socket 明 ...

  5. Unity发布Exe后,去掉提示分辨率的窗口

    Unity版本:2017.4 菜单File->Build Settings...,修改如下图的位置,将“Display Resolution Dialog”从Enabled改为Disabled

  6. java下Mysql基本操作

    https://www.cnblogs.com/centor/p/6142775.html

  7. 对JAVA RMI的认识

    RMI的定义 RPC (Remote Procedure Call):远程方法调用,用于一个进程调用另一个进程中的过程,从而提供了过程的分布能力. RMI(Remote Method Invocati ...

  8. url 地址含参数较多如何拼接

    url 地址拼接是经常会遇到的问题.所以必须要掌握这个技术 1.合并参数对象,循环出来. var commonParams = { g_tk: 1928093487, inCharset: 'utf- ...

  9. centos7开机出现try again to boot into default maintenance give root password for maintenance

    开启centos7出现下面两句话,然后直接输出root密码,就可以登录,但是登录后,发现一些文字显示出来的是乱码 try again to boot into default maintenanceg ...

  10. 6/10 sprint2 看板和燃尽图的更新