Shuffle的正常意思是洗牌或弄乱,可能大家更熟悉的是Java API里的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序。如果你不知道MapReduce里Shuffle是什么,那么请看这张图:

这张是官方对Shuffle过程的描述。但我可以肯定的是,单从这张图你基本不可能明白Shuffle的过程,因为它与事实相差挺多,细节也是错乱的。后面我会具体描述Shuffle的事实情况,所以这里你只要清楚Shuffle的大致范围就成-怎样把map task的输出结果有效地传送到reduce端。也可以这样理解, Shuffle描述着数据从map task输出到reduce task输入的这段过程。

在Hadoop这样的集群环境中,大部分map task与reduce task的执行是在不同的节点上。当然很多情况下Reduce执行时需要跨节点去拉取其它节点上的map task结果。如果集群正在运行的job有很多,那么task的正常执行对集群内部的网络资源消耗会很严重。这种网络消耗是正常的,我们不能限制,能做的就是最大化地减少不必要的消耗。还有在节点内,相比于内存,磁盘IO对job完成时间的影响也是可观的。从最基本的要求来说,我们对Shuffle过程的期望可以有:

  • 完整地从map task端拉取数据到reduce 端。
  • 在跨节点拉取数据时,尽可能地减少对带宽的不必要消耗。
  • 减少磁盘IO对task执行的影响。

OK,看到这里时,大家可以先停下来想想,如果是自己来设计这段Shuffle过程,那么你的设计目标是什么。我想能优化的地方主要在于减少拉取数据的量及尽量使用内存而不是磁盘。

我的分析是基于Hadoop0.21.0的源码,如果与你所认识的Shuffle过程有差别,不吝指出。我会以WordCount为例,并假设它有8个map task和3个reduce task。从上图看出,Shuffle过程横跨map与reduce两端,所以下面我也会分两部分来展开。

先看看map端的情况,如下图:

上图可能是某个map task的运行情况。拿它与官方图的左半边比较,会发现很多不一致。官方图没有清楚地说明partition, sort与combiner到底作用在哪个阶段。我画了这张图,希望让大家清晰地了解从map数据输入到map端所有数据准备好的全过程。

整个流程我分了四步。简单些可以这样说,每个map task都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候需要将缓冲区的数据以一个临时文件的方式存放到磁盘,当整个map task结束后再对磁盘中这个map task产生的所有临时文件做合并,生成最终的正式输出文件,然后等待reduce task来拉数据。

当然这里的每一步都可能包含着多个步骤与细节,下面我对细节来一一说明: 
1.        在map task执行时,它的输入数据来源于HDFS的block,当然在MapReduce概念中,map task只读取split。Split与block的对应关系可能是多对一,默认是一对一。在WordCount例子里,假设map的输入数据都是像“aaa”这样的字符串。

2.        在经过mapper的运行后,我们得知mapper的输出是这样一个key/value对: key是“aaa”, value是数值1。因为当前map端只做加1的操作,在reduce task里才去合并结果集。前面我们知道这个job有3个reduce task,到底当前的“aaa”应该交由哪个reduce去做呢,是需要现在决定的。

MapReduce提供Partitioner接口,它的作用就是根据key或value及reduce的数量来决定当前的这对输出数据最终应该交由哪个reduce task处理。默认对key hash后再以reduce task数量取模。默认的取模方式只是为了平均reduce的处理能力,如果用户自己对Partitioner有需求,可以订制并设置到job上。

在我们的例子中,“aaa”经过Partitioner后返回0,也就是这对值应当交由第一个reducer来处理。接下来,需要将数据写入内存缓冲区中,缓冲区的作用是批量收集map结果,减少磁盘IO的影响。我们的key/value对以及Partition的结果都会被写入缓冲区。当然写入之前,key与value值都会被序列化成字节数组。

整个内存缓冲区就是一个字节数组,它的字节索引及key/value存储结构我没有研究过。如果有朋友对它有研究,那么请大致描述下它的细节吧。

3.        这个内存缓冲区是有大小限制的,默认是100MB。当map task的输出结果很多时,就可能会撑爆内存,所以需要在一定条件下将缓冲区中的数据临时写入磁盘,然后重新利用这块缓冲区。这个从内存往磁盘写数据的过程被称为Spill,中文可译为溢写,字面意思很直观。这个溢写是由单独线程来完成,不影响往缓冲区写map结果的线程。溢写线程启动时不应该阻止map的结果输出,所以整个缓冲区有个溢写的比例spill.percent。这个比例默认是0.8,也就是当缓冲区的数据已经达到阈值(buffer size * spill percent = 100MB * 0.8 = 80MB),溢写线程启动,锁定这80MB的内存,执行溢写过程。Map task的输出结果还可以往剩下的20MB内存中写,互不影响。

当溢写线程启动后,需要对这80MB空间内的key做排序(Sort)。排序是MapReduce模型默认的行为,这里的排序也是对序列化的字节做的排序。

在这里我们可以想想,因为map task的输出是需要发送到不同的reduce端去,而内存缓冲区没有对将发送到相同reduce端的数据做合并,那么这种合并应该是体现是磁盘文件中的。从官方图上也可以看到写到磁盘中的溢写文件是对不同的reduce端的数值做过合并。所以溢写过程一个很重要的细节在于,如果有很多个key/value对需要发送到某个reduce端去,那么需要将这些key/value值拼接到一块,减少与partition相关的索引记录。

在针对每个reduce端而合并数据时,有些数据可能像这样:“aaa”/1, “aaa”/1。对于WordCount例子,就是简单地统计单词出现的次数,如果在同一个map task的结果中有很多个像“aaa”一样出现多次的key,我们就应该把它们的值合并到一块,这个过程叫reduce也叫combine。但MapReduce的术语中,reduce只指reduce端执行从多个map task取数据做计算的过程。除reduce外,非正式地合并数据只能算做combine了。其实大家知道的,MapReduce中将Combiner等同于Reducer。

如果client设置过Combiner,那么现在就是使用Combiner的时候了。将有相同key的key/value对的value加起来,减少溢写到磁盘的数据量。Combiner会优化MapReduce的中间结果,所以它在整个模型中会多次使用。那哪些场景才能使用Combiner呢?从这里分析,Combiner的输出是Reducer的输入,Combiner绝不能改变最终的计算结果。所以从我的想法来看,Combiner只应该用于那种Reduce的输入key/value与输出key/value类型完全一致,且不影响最终结果的场景。比如累加,最大值等。Combiner的使用一定得慎重,如果用好,它对job执行效率有帮助,反之会影响reduce的最终结果。

4.        每次溢写会在磁盘上生成一个溢写文件,如果map的输出结果真的很大,有多次这样的溢写发生,磁盘上相应的就会有多个溢写文件存在。当map task真正完成时,内存缓冲区中的数据也全部溢写到磁盘中形成一个溢写文件。最终磁盘中会至少有一个这样的溢写文件存在(如果map的输出结果很少,当map执行完成时,只会产生一个溢写文件),因为最终的文件只有一个,所以需要将这些溢写文件归并到一起,这个过程就叫做Merge。Merge是怎样的?如前面的例子,“aaa”从某个map task读取过来时值是5,从另外一个map 读取时值是8,因为它们有相同的key,所以得merge成group。什么是group。对于“aaa”就是像这样的:{“aaa”, [5, 8, 2, …]},数组中的值就是从不同溢写文件中读取出来的,然后再把这些值加起来。请注意,因为merge是将多个溢写文件合并到一个文件,所以可能也有相同的key存在,在这个过程中如果client设置过Combiner,也会使用Combiner来合并相同的key。

至此,map端的所有工作都已结束,最终生成的这个文件也存放在TaskTracker够得着的某个本地目录内。每个reduce task不断地通过RPC从JobTracker那里获取map task是否完成的信息,如果reduce task得到通知,获知某台TaskTracker上的map task执行完成,Shuffle的后半段过程开始启动。

简单地说,reduce task在执行之前的工作就是不断地拉取当前job里每个map task的最终结果,然后对从不同地方拉取过来的数据不断地做merge,也最终形成一个文件作为reduce task的输入文件。见下图:

如map 端的细节图,Shuffle在reduce端的过程也能用图上标明的三点来概括。当前reduce copy数据的前提是它要从JobTracker获得有哪些map task已执行结束,这段过程不表,有兴趣的朋友可以关注下。Reducer真正运行之前,所有的时间都是在拉取数据,做merge,且不断重复地在做。如前面的方式一样,下面我也分段地描述reduce 端的Shuffle细节: 
1.        Copy过程,简单地拉取数据。Reduce进程启动一些数据copy线程(Fetcher),通过HTTP方式请求map task所在的TaskTracker获取map task的输出文件。因为map task早已结束,这些文件就归TaskTracker管理在本地磁盘中。

2.        Merge阶段。这里的merge如map端的merge动作,只是数组中存放的是不同map端copy来的数值。Copy过来的数据会先放入内存缓冲区中,这里的缓冲区大小要比map端的更为灵活,它基于JVM的heap size设置,因为Shuffle阶段Reducer不运行,所以应该把绝大部分的内存都给Shuffle用。这里需要强调的是,merge有三种形式:1)内存到内存  2)内存到磁盘  3)磁盘到磁盘。默认情况下第一种形式不启用,让人比较困惑,是吧。当内存中的数据量到达一定阈值,就启动内存到磁盘的merge。与map 端类似,这也是溢写的过程,这个过程中如果你设置有Combiner,也是会启用的,然后在磁盘中生成了众多的溢写文件。第二种merge方式一直在运行,直到没有map端的数据时才结束,然后启动第三种磁盘到磁盘的merge方式生成最终的那个文件。

3.        Reducer的输入文件。不断地merge后,最后会生成一个“最终文件”。为什么加引号?因为这个文件可能存在于磁盘上,也可能存在于内存中。对我们来说,当然希望它存放于内存中,直接作为Reducer的输入,但默认情况下,这个文件是存放于磁盘中的。至于怎样才能让这个文件出现在内存中,之后的性能优化篇我再说。当Reducer的输入文件已定,整个Shuffle才最终结束。然后就是Reducer执行,把结果放到HDFS上。

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

我们按照图中的1234步逐步进行说明:
①在map端首先接触的是InputSplit,在InputSplit中含有DataNode中的数据,每一个InputSplit都会分配一个Mapper任务。
②当key/value被写入缓冲区之前,都会被序列化为字节流。mapreduce提供Partitioner接口,它的作用就是根据key或value及reduce的数量来决定当前的这对输出数据最终应该交由哪个reduce task处理(分区)。默认对key hash后再以reduce task数量取模。默认的取模方式只是为了平均reduce的处理能力,如果用户自己对Partitioner有需求,可以订制并设置到job上。

注意:虽然Partitioner接口会计算出一个值来决定某个输出会交给哪个reduce去处理,但是在缓冲区中并不会实现物理上的分区,而是将结果加载key-value后面。物理上的分区实在磁盘上进行的。

每个map有一个环形内存缓冲区,用于存储任务的输出。默认大小100MB(io.sort.mb属性)。
③一旦达到阀值80%(io.sort.spil l.percent),一个后台线程就把内容写到(spill:溢写)Linux本地磁盘中的指定目录(mapred.local.dir)下的新建的一个溢出写文件。在这一步会执行两个操作排序和Combiner(前提是设置了Combiner)。

这里大家可能会出现疑问:是将哪部分溢写到磁盘上那?答案是,溢写线程启动时,会锁定这80M的内存,执行溢写过程。而剩余的那20M缓冲区会继续接收map的输出,直到缓冲区写满,Map 才会被阻塞直到spill 完成。spill操作和接收map输出的操作是两个独立的线程,故互不影响。

spill 线程在把缓冲区的数据写到磁盘前,会对它进行一个二次快速排序,首先根据数据所属的partition (分区)排序,然后每个partition 中再按Key 排序。输出包括一个索引文件和数据文件。如果设定了Combiner,将在排序输出的基础上运行。Combiner 就是一个简单Reducer操作,它在执行Map 任务的节点本身运行,先对Map 的输出做一次简单Reduce,使得Map 的输出更紧凑,更少的数据会被写入磁盘和传送到Reducer。spill 文件保存在由mapred.local.dir指定的目录中,map 任务结束后删除。

每次溢写会在磁盘上生成一个溢写文件,如果map的输出结果很大,有多次这样的溢写发生,磁盘上相应的就会有多个溢写文件存在。而如果map的输出很小以至于最终也没有到达阀值,那最后会将其缓冲区的内容写入磁盘。
④因为最终的文件只有一个,所以需要将这些溢写文件归并到一起,
这个过程就叫做Merge。因为merge是将多个溢写文件合并到一个文件,所以可能也有相同的key存在,在这个过程中如果client设置过Combiner,也会使用Combiner来合并相同的key。

从这里我们可以得出,溢写操作是写到了磁盘上,并不一定就是最终的结果,因为最终结果是要只有一个文件,除非其map的输出很小以至于没有没有发生过溢写(也就是说磁盘上只有一个文件)。

到这里,map端的shuffle就全部完成了。

reduce端的shuffle:

map完成后,会通过心跳将信息传给tasktracker,其进而通知jobtracker,reduce task不断地通过RPC从JobTracker那里获取map task是否完成的信息,当得知某个TaskTracker上的map task执行完成,Reduce端的shuffle就开始工作了。

注意:这里是reduce端的shuffle开始工作,而不是reduce操作开始执行,在shuffle阶段reduce不会运行。

同样我们按照图中的标号,分为三个阶段进行讲解。
**①**Copy阶段:reduce端默认有5个数据复制线程从map端复制数据,其通过Http方式得到Map对应分区的输出文件。reduce端并不是等map端执行完后将结果传来,而是直接去map端去Copy输出文件。
**②**Merge阶段:reduce端的shuffle也有一个环形缓冲区,它的大小要比map端的灵活(由JVM的heapsize设置),由Copy阶段获得的数据,会存放的这个缓冲区中,同样,当到达阀值时会发生溢写操作,这个过程中如果设置了Combiner也是会执行的,这个过程会一直执行直到所有的map输出都被复制过来,如果形成了多个磁盘文件还会进行合并,最后一次合并的结果作为reduce的输入而不是写入到磁盘中。
③当Reducer的输入文件确定后,整个Shuffle操作才最终结束。之后就是Reducer的执行了,最后Reducer会把结果存到HDFS上。

shuffle的工作原理的更多相关文章

  1. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  2. MapReduce工作原理图文详解

    目录:1.MapReduce作业运行流程2.Map.Reduce任务中Shuffle和排序的过程 1.MapReduce作业运行流程 流程示意图: 流程分析: 1.在客户端启动一个作业. 2.向Job ...

  3. MapReduce工作原理讲解

    第一部分:MapReduce工作原理 MapReduce 角色•Client :作业提交发起者.•JobTracker: 初始化作业,分配作业,与TaskTracker通信,协调整个作业.•TaskT ...

  4. MapReduce工作原理

    第一部分:MapReduce工作原理   MapReduce 角色•Client :作业提交发起者.•JobTracker: 初始化作业,分配作业,与TaskTracker通信,协调整个作业.•Tas ...

  5. Hadoop 4、Hadoop MapReduce的工作原理

    一.MapReduce的概念 MapReduce是hadoop的核心组件之一,hadoop要分布式包括两部分,一是分布式文件系统hdfs,一部是分布式计算框就是mapreduce,两者缺一不可,也就是 ...

  6. [转载] MapReduce工作原理讲解

    转载自http://www.aboutyun.com/thread-6723-1-1.html 有时候我们在用,但是却不知道为什么.就像苹果砸到我们头上,这或许已经是很自然的事情了,但是牛顿却发现了地 ...

  7. 分布式计算框架学习笔记--hadoop工作原理

    (hadoop安装方法:http://blog.csdn.net/wangjia55/article/details/53160679这里不再累述) hadoop是针对大数据设计的一个计算架构.如果你 ...

  8. Hadoop MapReduce工作原理

    在学习Hadoop,慢慢的从使用到原理,逐层的深入吧 第一部分:MapReduce工作原理   MapReduce 角色 •Client :作业提交发起者. •JobTracker: 初始化作业,分配 ...

  9. MapReduce的工作原理

    MapReduce简介 MapReduce是一种并行可扩展计算模型,并且有较好的容错性,主要解决海量离线数据的批处理.实现下面目标 ★ 易于编程 ★ 良好的扩展性 ★ 高容错性   MapReduce ...

随机推荐

  1. Python简单试题

    1,相乘次数 题目要求描述: 一个整数每一位上的数字相乘,判断是否为个位数,若是则程序结束 ,不是则继续相乘,要求返回相乘次数. 例:39 > 3*9=27 > 2*7=14 > 1 ...

  2. CV code references

    转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SI ...

  3. python获取设备主机名和IP地址

    import socket def print_machine_info(): host_name = socket.gethostname() ip_address = socket.gethost ...

  4. E - Coin Change UVA - 674 &&(一些记录路径的方法)

    这一道题并不难,我们只需要将dp数组先清空,再给dp[0]=1,之后就按照完全背包的模板写 主要是我们要证明着一种方法不会出现把(1+3+4)(1+4+3)当作两种方法,这一点如果自己写过背包的那个表 ...

  5. 总结fiddle

    fiddler重新发送请求   模拟限速 http://caibaojian.com/fiddler.html fiddler模拟限速的原理 我们可以通过fiddler来模拟限速,因为fiddler本 ...

  6. 高可用Redis(三):Hash类型

    1.哈希类型键值结构 哈希类型也是key-value结构,key是字符串类型,其value分为两个部分:field和value 其中field部分代表属性,value代表属性对应的值 上面的图里,us ...

  7. curl 查看一个web站点的响应时间

    1. curl 查看web站点 curl -o /dev/null -s -w "time_namelookup:%{time_namelookup}s\ntime_connect:%{ti ...

  8. 阿里云centos安装docker

    近期转向core开发,mssql也支持了docker,索性把手上的一台服务改成centos做测试开发.中间安装docker碰到的问题做个记录. docker版本 docker从1.13版本之后采用时间 ...

  9. centos 7.5+如何格式化硬盘

    [root@k8s-node2 ~]# fdisk -l Disk /dev/sdb: bytes, sectors Units = sectors of * = bytes Sector size ...

  10. line-gradient 之渐变角度

    MDN上对于linear-gradient的定义如下: CSS linear-gradient() 函数用于创建一个表示两种或多种颜色线性渐变的图片.其结果属于<gradient>数据类型 ...