1.  当流体的压力 $p$ 及温度 $T$ 改变时, 密度 $\rho$ 变化很小. 此时可近似地把流体看作是不可压的, 而 $\rho=\const$. 如此, 流体动力学方程组中的质量、动量守恒方程组可化为 $$\bee\label{2_3_NSE} \bea \Div{\bf u}&=0,\\ \cfrac{\rd{\bf u}}{\rd t}-\mu\lap{\bf u}+\n p&={\bf F}. \eea \eee$$

2.  \eqref{2_3_NSE} 的求解一般先把 $p$ 抹掉, 而依赖于如下引理: 设 ${\bf u}$ 在 $\Omega$ 中适当光滑, 则 ${\bf u}$ 可唯一表成 $$\bex {\bf u}={\bf w}+\n p, \eex$$ 其中 ${\bf w}$ 满足 $$\beex \bea \Div{\bf w}=0,&\quad\mbox{in }\Omega,\\ {\bf w}\cdot{\bf n}=0,&\quad\mbox{on }\p \Omega; \eea \eeex$$ 且当 ${\bf u}\in L^2(\Omega)$ 时, ${\bf w}\in L^2(\Omega)$, 可选 $p\in H^1(\Omega)$.

[物理学与PDEs]第2章第3节 Navier-Stokes 方程组的更多相关文章

  1. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  2. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  3. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构

    1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3.  右端项具有间 ...

  4. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程

    1.  记号与假设 (1)  已燃气体的化学能为 $0$. (2)  单位质量的未燃气体的化学能为 $g_0>0$. 2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex ...

  5. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约

    1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...

  6. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组

    1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2.  物理化学 (1)  燃烧过程中, 通过化学反应 ...

  7. [物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构

    1.  在流体存在粘性.热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 2.  在流体存在粘性.热传导但 $\sigma=\infty$ ...

  8. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组

    不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma ...

  9. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组

    1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma ...

  10. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正

    1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$ 2.  动量守恒方程 $$\bex \cfrac{\p }{\p ...

随机推荐

  1. Java使用volatile实现多线程输出ABC共10次

    问题 有A,B,C三个线程, A线程输出A, B线程输出B, C线程输出C.要求,同时启动三个线程, 按顺序输出ABC, 循环10次. 今天在写多线程的时候找例子,见到了这样一个题,觉得不难,但是在网 ...

  2. [LeetCode] 15. 三数之和

    题目链接:https://leetcode-cn.com/problems/3sum/ 题目描述: 给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a ...

  3. Resolving Issues of "Library Cache Pin" or "Cursor Pin S wait on X" (Doc ID 1476663.1)

    Doc ID 1476663.1) To Bottom In this Document   Purpose   Troubleshooting Steps   Brief Definition:   ...

  4. P1744 采购特价商品 题解(讲解图论)

    图论的超级初级题目(模板题) 最短路径的模板题 图是啥?(白纸上的符号?) 对于一个拥有n个顶点的无向连通图,它的边数一定多于n-1条.若从中选择n-1条边,使得无向图仍然连通,则由n个顶点及这 n- ...

  5. sub2ind函数

    sub2ind函数是MATLAB中对矩阵索引号检索的函数,用法如下: >> A=rand(5) A = 0.6850    0.0867    0.2290    0.1006    0. ...

  6. nginx 配置文件的结构

    1.nginx.conf的主要部分 events { } http { server { location path { ... } location path { ... } } server { ...

  7. SQL SERVER数据库修改是否区分大小写(转载)

    昨天去客户,发现程序无法应用,跟踪错误提示,提示的大致意思是“数据库表名和数据库字段名不存在”.查询后发现是SQL Server数据库设置了区分大小写的缘故(一般安装时,Oracle的正确安装下是默认 ...

  8. multiset的erase()操作中出现跳过元素的问题

    昨天,我写了一个multiset去重,让tt指向it的后面第一个元素,若重复则删除这2个元素,并令it=tt,it++:来使it指向tt的下一个元素(我想指向原it的后面第2个元素,并认为tt的下一个 ...

  9. linux-高并发与负载均衡-lvs-3种模型推导

    NAT地址转换:

  10. setData优化过程

    https://blog.csdn.net/rolan1993/article/details/88106343 在做一个小球跟随手指移动的效果时候,由于在touchmove事件中频繁调用setDat ...