试求 $$\bex \vlm{n}n^2\sex{x^\frac{1}{n}-x^\frac{1}{n+1}},\quad x>0. \eex$$

解答: $$\beex \bea \mbox{原极限} &=\vlm{n}n^2\cdot x^\xi\ln x\sex{\frac{1}{n}-\frac{1}{n+1}}\quad\sex{\frac{1}{n+1}<\xi<\frac{1}{n}}\\ &=\ln x. \eea \eeex$$

[再寄小读者之数学篇](2014-10-18 利用 Lagrange 中值定理求极限)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. iOS Accessibility指南

    开发者经常会为用户开发一些令人充满惊喜的App.但是,开发者真的为每一个潜在的用户都做适配了么?是否每个人都可以真正使用你的APP呢? 设计APP.产品或者任何类型的服务,都要考虑到所有用户,包括视力 ...

  2. 面向对象_new,__eq__,__hash__

    老师博客:http://www.cnblogs.com/Eva-J/articles/7351812.html __new__ __init__是一种初始化的方法 __new__是构建方法,创建一个对 ...

  3. admin组件

    Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以在项目的 settings.py 中的 INSTALLED_APPS 看到它 ...

  4. Failed to start /etc/rc.d/rc.local Compatibility

    查看/var/log/message Jun :: root systemd: Started Network Manager. Jun :: root systemd: Starting LSB: ...

  5. 重写override

    不可重写私有方法. 不可重写非静态的方法,虽然编译器不会报错,但是得不到预期的结果. 可以通过重写的形式对父类的功能进行重新定义,比如:对功能进行修改或者进行升级时. class BaseAction ...

  6. websocket 实现单聊群聊 以及 握手原理+加密方式

    WebSocket 开始代码 服务端 群聊 # type:WebSocket 给变量标注类型 # websocket web + socket from geventwebsocket.server ...

  7. linux-python3.8安装

    环境:  centos7.5 版本:python3.8 1.依赖包安装 yum -y install zlib-devel bzip2-devel openssl-devel ncurses-deve ...

  8. 几行c#代码,轻松搞定一个女大学生

    几行c#代码,轻松搞定一个女大学生 的作业... 哈哈,标题党了哈,但是是真的,在外面敲代码,想赚点外快,接到了一个学生的期末考试,是一个天气预报的程序.程序并不难. 看到这个需求第一个想法就是只要找 ...

  9. Github经理和员工开发

    Git简介 Git是目前世界上最先进的分布式版本控制系统 git的两大特点: 版本控制:可以解决多人同时开发的代码问题,也可以解决找回历史代码的问题 分布式:Git是分布式版本控制系统,同一个Git仓 ...

  10. mysql监控每一条执行的sql语句

    查看日志配置是否打开 SHOW VARIABLES LIKE "general_log%"; SET GLOBAL general_log = 'ON';   打开日志 SET G ...