[再寄小读者之数学篇](2014-10-18 利用 Lagrange 中值定理求极限)
试求 $$\bex \vlm{n}n^2\sex{x^\frac{1}{n}-x^\frac{1}{n+1}},\quad x>0. \eex$$
解答: $$\beex \bea \mbox{原极限} &=\vlm{n}n^2\cdot x^\xi\ln x\sex{\frac{1}{n}-\frac{1}{n+1}}\quad\sex{\frac{1}{n+1}<\xi<\frac{1}{n}}\\ &=\ln x. \eea \eeex$$
[再寄小读者之数学篇](2014-10-18 利用 Lagrange 中值定理求极限)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- Git命令行管理代码、安装及使用
出处:https://www.cnblogs.com/ximiaomiao/p/7140456.html Git安装和使用 目的:通过Git管理github托管项目代码 一.下载安装Git 1 ...
- Configuring Apache Kafka for Performance and Resource Management
Apache Kafka is optimized for small messages. According to benchmarks, the best performance occurs w ...
- 苹果绿RGB值
ESL的值为:85,123,205 RGB的值为:199,237,204 ESL和RGB只需填一个即可,另一个会自动调整~
- springboot在eclipse中运行使用开发配置,打包后运行使用生产环境默认配置
java命令运行springboot jar文件,指定配置文件可使用如下两个参数中其中一个 --spring.config.location=配置文件路径 -Dspring.profiles.acti ...
- Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures
参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...
- MyCP(课下作业,必做)
MyCP(课下作业,必做) 要求 编写MyCP.java 实现类似Linux下cp XXX1 XXX2 的功能,要求MyCP支持两个参数: java MyCP -tx XXX1.txt XXX2.bi ...
- ABP大型项目实战(2) - 调试与排错 - 日志 - 查看审计日志
这是<ABP大型项目实战>系列文章的一篇. 项目发布到生产环境后难免会有错误. 那么如何进行调试和排错呢? 我看到俱乐部里有人是直接登陆生产服务器把数据库下载到开发机器进行调试排错 ...
- H5调用手机拍照并展示在前端页面
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Centos7 利用crontab定时执行任务及配置方法
crond是什么? crond 和crontab是不可分割的.crontab是一个命令,常见于Unix和类Unix的操作系统之中,用于设置周期性被执行的指令.该命令从标准输入设备读取指令,并将其存放于 ...
- 2019微信公开课 同行With Us 听课笔记及演讲全文
[2019WeChat 微信公开课] 产品理念: 微信启动页 一个小人站在地球前面,每个人都有自己的理解和解读 所谓异类,表示与别人与众不同,即优秀的代名词. 微信的与众不同体现在尊重用户对产品的感受 ...