beam 的异常处理 Error Handling Elements in Apache Beam Pipelines
Error Handling Elements in Apache Beam Pipelines

I have noticed a deficit of documentation or examples outside of the official Beam docs, as data pipelines are often intimately linked with business logic. While working with streaming pipelines, I developed a simple error handling technique, to reduce the disruption that errors cause to streaming or long-running jobs. Here I have an explanation of that technique, and a simple demo pipeline.
Apache Beam is a high level model for programming data processing pipelines. It provides language interfaces in both Java and Python, though Java support is more feature-complete.
Beam supports running in two modes: batch, and streaming. In batch mode, a finite data set is read in, processed, then output in one huge chunk. Streaming mode allows for data to be continuously read in from a streaming source (such as a message queue), processed in small chunks, and output as processing occurs. Streaming allows for analytics to be performed in “real time” as events occurs. This is extremely valuable for telemetry and logging, where engineers or other systems need feedback as events happen.
Beam pipelines are composed of a series of typed data sets (PCollections), and transforms. Transforms take a PCollection, perform a programmer-defined operation on the collection elements, then output zero or more new PCollections as a result.
The problem with these transforms is that they need to eventually operate on data. As anyone familiar with handling user input or data from large systems can attest, that data can be malformed, or just unexpected. If a bad piece of data enters the system, it may cause the entire pipeline to crash. This is a waste of time and compute resources at best, but can also result in losing in-memory streaming data, or disrupting downstream systems relying on the Beam output.
In order to stop a catastrophic failure, you need graceful error handling in your pipeline. The easiest way to do this is to add try-catch blocks within each transform, which prevents shutdown and allows all other elements to be processed.

A basic try/catch around a string conversion.
This is a start, but it’s not enough on its own. You’ll want to record failures — what data failed what transform, and why. To do this, you’ll want to create a data structure to store these errors, and an output channel for them.
The data structure for a failure should contain:
- Source data in some form (data ID, the raw data fed into the transform, or the raw data precursor that was fed into the pipeline).
- The reason for the failure.
- The transform that failed.

Example constructor of a Failure object.
We can instantiate a Failure if an exception or error is thrown during a transform.

Parsing some fields out of auditd log strings. In this example, we use an inappropriately small number type. If the number is too large for an Integer, the transform outputs a Failure object, and continues processing elements.
Next, we need to be able to record the failure for developers to reference.
Beam transforms by default only have one output PCollection, but they can output multiple PCollections. A transform can return a PCollectionTuple, which uses TupleTag objects to reference which PCollection to put an element into, and which PCollection to fetch from the TupleTag. This has many uses, and we can use it here to separately output a PCollection of successful results, and a PCollection of Failure objects.

Accessing the PCollections stored in a PCollectionTuple.
In the demo repo, successes and failures are simply written to files. In a real pipeline, they would likely be sent to a database, or a message queue for additional processing or reporting.
You may also want to extend coverage beyond just handling thrown exceptions. For example, we could validate that all data falls within expected parameters (EG all user ids are ≥ 0) and is present, to prevent logical errors, missing records, or DB insertion failures further along. That validation could be extended into the Failure class, or it could be a new Invalid class and PCollection.
This covers the handling of elements themselves, but there are many design decisions beyond that, such as: what next? Data scientists or developers must review the errors, and discard data that is outright bad. If data is merely in an unexpected format, or exposed a now-fixed bug in the pipeline, then that data should be re-processed. It’s common (moreso in batch pipelines) to retry a whole dataset after any bugs in the pipeline are addressed. This is time consuming to process, but easy to support, and allows for grouped data (sums, aggregates, etc) to be corrected by adding the missing data. Some pipelines may only retry individual elements, if the pipeline is a 1-in-1-out process.
There is a GitHub repo at https://github.com/vllry/beam-errorhandle-example which shows the full proof of concept using auditd log files.
final TupleTag<Output> successTag = new TupleTag<>() {};
final TupleTag<Input> deadLetterTag = new TupleTag<>() {};
PCollection<Input> input = /* … */;
PCollectionTuple outputTuple = input.apply(ParDo.of(new DoFn<Input, Output>() {
@Override
void processElement(ProcessContext c) {
try {
c.output(process(c.element());
} catch (Exception e) {
LOG.severe("Failed to process input {} -- adding to dead letter file",
c.element(), e);
c.sideOutput(deadLetterTag, c.element());
}
}).withOutputTags(successTag, TupleTagList.of(deadLetterTag)));
// Write the dead letter inputs to a BigQuery table for later analysis
outputTuple.get(deadLetterTag)
.apply(BigQueryIO.write(...));
// Retrieve the successful elements...
PCollection<Output> success = outputTuple.get(successTag);
// and continue processing as desired ...
beam 的异常处理 Error Handling Elements in Apache Beam Pipelines的更多相关文章
- Spring Boot 2.x 系列教程:WebFlux REST API 全局异常处理 Error Handling
摘要: 原创出处 https://www.bysocket.com 「公众号:泥瓦匠BYSocket 」欢迎关注和转载,保留摘要,谢谢! 本文内容 为什么要全局异常处理? WebFlux REST 全 ...
- Apache Beam WordCount编程实战及源码解读
概述:Apache Beam WordCount编程实战及源码解读,并通过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流 ...
- Beam编程系列之Apache Beam WordCount Examples(MinimalWordCount example、WordCount example、Debugging WordCount example、WindowedWordCount example)(官网的推荐步骤)
不多说,直接上干货! https://beam.apache.org/get-started/wordcount-example/ 来自官网的: The WordCount examples demo ...
- Apache Beam WordCount编程实战及源代码解读
概述:Apache Beam WordCount编程实战及源代码解读,并通过intellij IDEA和terminal两种方式调试执行WordCount程序,Apache Beam对大数据的批处理和 ...
- Apache Beam,批处理和流式处理的融合!
1. 概述 在本教程中,我们将介绍 Apache Beam 并探讨其基本概念. 我们将首先演示使用 Apache Beam 的用例和好处,然后介绍基本概念和术语.之后,我们将通过一个简单的例子来说明 ...
- Apache Beam入门及Java SDK开发初体验
1 什么是Apache Beam Apache Beam是一个开源的统一的大数据编程模型,它本身并不提供执行引擎,而是支持各种平台如GCP Dataflow.Spark.Flink等.通过Apache ...
- Apache Beam编程指南
术语 Apache Beam:谷歌开源的统一批处理和流处理的编程模型和SDK. Beam: Apache Beam开源工程的简写 Beam SDK: Beam开发工具包 **Beam Java SDK ...
- setjmp()、longjmp() Linux Exception Handling/Error Handling、no-local goto
目录 . 应用场景 . Use Case Code Analysis . 和setjmp.longjmp有关的glibc and eglibc 2.5, 2.7, 2.13 - Buffer Over ...
- Error Handling in ASP.NET Core
Error Handling in ASP.NET Core 前言 在程序中,经常需要处理比如 404,500 ,502等错误,如果直接返回错误的调用堆栈的具体信息,显然大部分的用户看到是一脸懵逼的 ...
随机推荐
- linux快捷进入长目录的方法
快捷命令 :alias chaoyang ='cd /usr/lib/uu/hh/lib' 1.将上述设置写到家目录的.bashrc文件中(~/.bashrc) 2.然后source ./bash ...
- oracle 10g函数大全--日期型函数
sysdate [功能]:返回当前日期. [参数]:没有参数,没有括号 [返回]:日期 [示例]select sysdate hz from dual; 返回:2008-11-5 add_months ...
- Linux学习历程——Centos 7 top命令
一.命令介绍 top 命令用于动态的监控进程活动与系统负载信息. 格式为 top [参数] 二.实例 直接运行top命令 top命令执行结果的前五行为系统整体的统计信息,代表含义如下: 第1行:系统时 ...
- Python距离放弃拉近的day03
新的一天,依旧是内容补充,补充了数学没有的运算符,in和not in,就是判断in前面的东西是不是在后面的数据中,然后新课讲了平常最常用的字符串的方法,引号的里面全部都是字符串,在其中就会又如何判断这 ...
- mysql 相关命令
1.mysql导入导出 导出 进入到mysql bin目录 导出表 ./mysqldump -uroot -p --socket=/wdcloud/app/mysql1/temp/mysql.sock ...
- DEV SIT UAT PET SIM PRD PROD常见环境英文缩写含义
英文缩写 英文 中文 DEV development 开发 SIT System Integrate Test 系统整合测试(内测) UAT User Acceptance Test 用户验收测试 P ...
- 好程序员web前端分享18个用CSS制作出来的东西
好程序员web前端分享18个用CSS制作出来的东西,与流行的看法相反,CSS不仅仅是用来提供一个WEB页面的基本风格,以使它看起来更有吸引力.还有很多其他的事情,CSS也可以做的很好.由于它创建动画和 ...
- 在IIS上部署(托管).NET Core站点
部署教程 操作系统要求 Windows 7 或更高版本 Windows Server 2008 R2 或更高版本 依赖的组件 Runtime & Hosting Bundle image. ...
- 多数据库有序GUID
背景 常见的一种数据库设计是使用连续的整数为做主键,当新的数据插入到数据库时,由数据库自动生成.但这种设计不一定适合所有场景. 随着越来越多的使用Nhibernate.EntityFramework等 ...
- Auto Layout - BNR
继续UIImageView - BNR篇. 通过Homepwner TARGETS -> General -> Deployment Info -> Devices中的iPhone改 ...