beam 的异常处理 Error Handling Elements in Apache Beam Pipelines
Error Handling Elements in Apache Beam Pipelines

I have noticed a deficit of documentation or examples outside of the official Beam docs, as data pipelines are often intimately linked with business logic. While working with streaming pipelines, I developed a simple error handling technique, to reduce the disruption that errors cause to streaming or long-running jobs. Here I have an explanation of that technique, and a simple demo pipeline.
Apache Beam is a high level model for programming data processing pipelines. It provides language interfaces in both Java and Python, though Java support is more feature-complete.
Beam supports running in two modes: batch, and streaming. In batch mode, a finite data set is read in, processed, then output in one huge chunk. Streaming mode allows for data to be continuously read in from a streaming source (such as a message queue), processed in small chunks, and output as processing occurs. Streaming allows for analytics to be performed in “real time” as events occurs. This is extremely valuable for telemetry and logging, where engineers or other systems need feedback as events happen.
Beam pipelines are composed of a series of typed data sets (PCollections), and transforms. Transforms take a PCollection, perform a programmer-defined operation on the collection elements, then output zero or more new PCollections as a result.
The problem with these transforms is that they need to eventually operate on data. As anyone familiar with handling user input or data from large systems can attest, that data can be malformed, or just unexpected. If a bad piece of data enters the system, it may cause the entire pipeline to crash. This is a waste of time and compute resources at best, but can also result in losing in-memory streaming data, or disrupting downstream systems relying on the Beam output.
In order to stop a catastrophic failure, you need graceful error handling in your pipeline. The easiest way to do this is to add try-catch blocks within each transform, which prevents shutdown and allows all other elements to be processed.
A basic try/catch around a string conversion.
This is a start, but it’s not enough on its own. You’ll want to record failures — what data failed what transform, and why. To do this, you’ll want to create a data structure to store these errors, and an output channel for them.
The data structure for a failure should contain:
- Source data in some form (data ID, the raw data fed into the transform, or the raw data precursor that was fed into the pipeline).
- The reason for the failure.
- The transform that failed.
Example constructor of a Failure object.
We can instantiate a Failure if an exception or error is thrown during a transform.
Parsing some fields out of auditd log strings. In this example, we use an inappropriately small number type. If the number is too large for an Integer, the transform outputs a Failure object, and continues processing elements.
Next, we need to be able to record the failure for developers to reference.
Beam transforms by default only have one output PCollection, but they can output multiple PCollections. A transform can return a PCollectionTuple, which uses TupleTag objects to reference which PCollection to put an element into, and which PCollection to fetch from the TupleTag. This has many uses, and we can use it here to separately output a PCollection of successful results, and a PCollection of Failure objects.
Accessing the PCollections stored in a PCollectionTuple.
In the demo repo, successes and failures are simply written to files. In a real pipeline, they would likely be sent to a database, or a message queue for additional processing or reporting.
You may also want to extend coverage beyond just handling thrown exceptions. For example, we could validate that all data falls within expected parameters (EG all user ids are ≥ 0) and is present, to prevent logical errors, missing records, or DB insertion failures further along. That validation could be extended into the Failure class, or it could be a new Invalid class and PCollection.
This covers the handling of elements themselves, but there are many design decisions beyond that, such as: what next? Data scientists or developers must review the errors, and discard data that is outright bad. If data is merely in an unexpected format, or exposed a now-fixed bug in the pipeline, then that data should be re-processed. It’s common (moreso in batch pipelines) to retry a whole dataset after any bugs in the pipeline are addressed. This is time consuming to process, but easy to support, and allows for grouped data (sums, aggregates, etc) to be corrected by adding the missing data. Some pipelines may only retry individual elements, if the pipeline is a 1-in-1-out process.
There is a GitHub repo at https://github.com/vllry/beam-errorhandle-example which shows the full proof of concept using auditd log files.
final TupleTag<Output> successTag = new TupleTag<>() {};
final TupleTag<Input> deadLetterTag = new TupleTag<>() {};
PCollection<Input> input = /* … */;
PCollectionTuple outputTuple = input.apply(ParDo.of(new DoFn<Input, Output>() {
@Override
void processElement(ProcessContext c) {
try {
c.output(process(c.element());
} catch (Exception e) {
LOG.severe("Failed to process input {} -- adding to dead letter file",
c.element(), e);
c.sideOutput(deadLetterTag, c.element());
}
}).withOutputTags(successTag, TupleTagList.of(deadLetterTag)));
// Write the dead letter inputs to a BigQuery table for later analysis
outputTuple.get(deadLetterTag)
.apply(BigQueryIO.write(...));
// Retrieve the successful elements...
PCollection<Output> success = outputTuple.get(successTag);
// and continue processing as desired ...
beam 的异常处理 Error Handling Elements in Apache Beam Pipelines的更多相关文章
- Spring Boot 2.x 系列教程:WebFlux REST API 全局异常处理 Error Handling
摘要: 原创出处 https://www.bysocket.com 「公众号:泥瓦匠BYSocket 」欢迎关注和转载,保留摘要,谢谢! 本文内容 为什么要全局异常处理? WebFlux REST 全 ...
- Apache Beam WordCount编程实战及源码解读
概述:Apache Beam WordCount编程实战及源码解读,并通过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流 ...
- Beam编程系列之Apache Beam WordCount Examples(MinimalWordCount example、WordCount example、Debugging WordCount example、WindowedWordCount example)(官网的推荐步骤)
不多说,直接上干货! https://beam.apache.org/get-started/wordcount-example/ 来自官网的: The WordCount examples demo ...
- Apache Beam WordCount编程实战及源代码解读
概述:Apache Beam WordCount编程实战及源代码解读,并通过intellij IDEA和terminal两种方式调试执行WordCount程序,Apache Beam对大数据的批处理和 ...
- Apache Beam,批处理和流式处理的融合!
1. 概述 在本教程中,我们将介绍 Apache Beam 并探讨其基本概念. 我们将首先演示使用 Apache Beam 的用例和好处,然后介绍基本概念和术语.之后,我们将通过一个简单的例子来说明 ...
- Apache Beam入门及Java SDK开发初体验
1 什么是Apache Beam Apache Beam是一个开源的统一的大数据编程模型,它本身并不提供执行引擎,而是支持各种平台如GCP Dataflow.Spark.Flink等.通过Apache ...
- Apache Beam编程指南
术语 Apache Beam:谷歌开源的统一批处理和流处理的编程模型和SDK. Beam: Apache Beam开源工程的简写 Beam SDK: Beam开发工具包 **Beam Java SDK ...
- setjmp()、longjmp() Linux Exception Handling/Error Handling、no-local goto
目录 . 应用场景 . Use Case Code Analysis . 和setjmp.longjmp有关的glibc and eglibc 2.5, 2.7, 2.13 - Buffer Over ...
- Error Handling in ASP.NET Core
Error Handling in ASP.NET Core 前言 在程序中,经常需要处理比如 404,500 ,502等错误,如果直接返回错误的调用堆栈的具体信息,显然大部分的用户看到是一脸懵逼的 ...
随机推荐
- HttpWebRequest 改为 HttpClient 踩坑记-请求头设置
HttpWebRequest 改为 HttpClient 踩坑记-请求头设置 Intro 这两天改了一个项目,原来的项目是.net framework 项目,里面处理 HTTP 请求使用的是 WebR ...
- JMeter 接口测试(一)
之前的篇幅介绍了soapUI测试接口, 因为功能丰富, 操作简单, 可以参数化而深受测试小伙伴的喜欢, 今天再给大家介绍一款利器, Jmeter是Apache组织下的免费工具, 我使用的是Mac 系统 ...
- 【公众号系列】SAP HANA和区块链
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[公众号系列]SAP HANA和区块链 写在 ...
- 【原】Java学习笔记011 - 数组
package cn.temptation; import java.util.Scanner; public class Sample01 { public static void main(Str ...
- docker-compose编排项目redis容器实现主从复制
一.pip管理工具安装 docker-compose是python项目,所以安装需要通过python下的包管理工具pip安装.一般linux服务器都会预安装有python环境,所以优先检查python ...
- 安装Gradle(Windows & Linux)
Gradle 是以 Groovy 语言为基础,面向Java应用为主.基于DSL(领域特定语言)语法的自动化构建工具.在github上,gradle项目很多,有的是gradel跟maven构建一块儿使用 ...
- springBoot集成redisCluster
本文主要内容:springBoot简介,在SpringBoot中如何集成Redis,可配置Redis集群. 关于SpringBoot 你想要的,这里都有:https://spring.io/proje ...
- 看门狗芯片--SP706SEN--调试记录
一.前因后果 工程中,设备为了稳定可靠,会增加外部看门狗,但是外部看门狗一旦启动,就停不下来,必须在固定的时间范围内进行喂狗,不然看门狗芯片就会产生一个复位信号复位MCU.以前大家都认为看门狗一旦工作 ...
- iOS开发基础-九宫格坐标(2)之模型
在iOS开发基础-九宫格(1)中,属性变量 apps 是从plist文件中加载数据的,在 viewDidLoad 方法中的第20行.26行中,直接通过字典的键名来获取相应的信息,使得 ViewCont ...
- .net core2.1 三层中使用Autofac代替原来Ioc
首先,现有的三层项目的结构 其中 Repository public interface IPersonRepository { string Eat(); } public class Perso ...