[洛谷P1357] 花园
题目类型:状压\(DP\) -> 矩阵乘法
绝妙然而思维难度极其大的一道好题!
传送门:>Here<
题意:有一个环形花圃,可以种两种花:0或1. 要求任意相邻的\(M\)个花中1的个数不超过\(k\)个。总共有\(N\)个花。问方案数
解题思路
非常巧妙的一道题。
先看如何拿到\(80pts\)
\(N \leq 10^5\),也就是说可以\(O(n)\)带若干常数。我们发现影响当前状态的决策的仅仅就是离它最近的那\(M\)个花圃。由此可以进行状压\(DP\),\(dp[i][s]\)表示目前决策第\(i\)个花圃,并且左侧\(M\)个花圃的状态为\(s\)时的方案数。很明显可以通过\(i-1\)时的状态来进行转移。由于仅仅只是向右移动了一格,所以原先的右边\(M-1\)个不动,新加进来的那个最右侧的可以是1或者0。当然在写方程的时候是要倒过来的,于是我们可以得到方程$$dp[i][s] = dp[i-1][(s/2)+2^{M-1}] + dp[i-1][s/2]$$我们可以先\(dfs\)预处理出所有的可能状态。
那么题目说花圃是个环形,怎么办的?其实好办。我们令\(dp[M][s]=1\),然后一路转移到\(dp[N+M]\),这时取\(dp[N+M][s]\)作为\(s\)为初始状态(前\(M\)个花圃)的答案。因为前\(M\)个花圃等同于\(N+1..M\)的花圃。他们的状态吻合了(都是\(s\))就对了。所以我们需要所有可行的枚举\(s\)作为初始状态。答案累积
仅仅就是递推?那是否可以,矩阵乘法??
矩阵乘法优化递推,然而这道题还略微有些复杂。
首先我们可以改写一下方程,使得它更加具备\(Floyd\)的外貌。
不如浪费一层循环,去扫一个状态\(k\)。使得如果\(k\)可以转移到\(j\),那么$$dp[i][j]=\sum\limits_{}dp[i-1][k]$$或者进一步,我们连\(if\)语句也省略掉,预处理一个布尔数组,其中\(b[k][j]\)表示\(k\)能否转移到\(j\)。那么$$dp[i][j]=\sum\limits_{}dp[i-1][k]*b[k][j]$$这样一来,这个式子就是标准的矩阵乘法了。我们可以忽略\(i\)的存在,它的结果就等同于初始的\(dp\)数组乘以这个布尔数组的\(N\)次方
于是我们就可以利用矩阵乘法将\(b\)数组做一个矩阵快速幂。
答案究竟是什么?
答案究竟是什么?我们究竟用什么来乘这个\(N\)次方的结果?
我们还是参考刚才的状压做法。枚举一个\(s\),此时只有\(dp[M][s]\)为1,其他都为0. 那么我们可以想象我们其实有\(32\)个初始的项,分别是\(dp[M][0],dp[M][1],..,dp[M][s],..,dp[M][32]\)。其中只有\(dp[M][s]\)为1. 每乘一次矩阵就刷新一遍,成为\(dp[M+1][0],dp[M+1][1],..,dp[M+1][s],..,dp[M+1][32]\).直到刷新\(N\)遍以后变成\(dp[M+N][0],dp[M+N][1],..,dp[M+N][s],..,dp[M+N][32]\)。然而对于每一个\(s\),我们只需要取\(dp[N+M][s]\)作为答案。
考虑我们的\(dp[N+M][s]\)是怎么得来的?是\(dp\)矩阵依次乘以布尔矩阵的第\(s\)列的和。而我们刚才说了,只有\(dp[N+M][s]\)为1,其他都是0。因此结果就等同于是\(b[s][s]\)这一项。
我们发现根本不用枚举\(s\)!也就是说,只需要做一遍矩阵乘法——因为对于状态\(s\),对应的答案一定是\(b[s][s]\)。那么最终的答案也就是所有的\(b[s][s]\)?即矩阵的对角线之和!当然,并不是整一条对角线,要确保\(s\)是合法的。
反思
思维难度及其深的一道题,不强求满分做法,就看状压那部分吧。最关键就是想到有哪些因数能够影响我这一步的决策。动态规划应对多阶段决策问题时一般都需要这样考虑。仔细分析就会发现只有最近的\(M\)个才会有影响,然而题目又出乎意料的给了\(M \leq 5\),状压就很明显了
Code
注意矩阵存的是真正的状态,而不是状态的编号……
/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define int ll
const int MAXN = 100010;
const int MOD = 1e9+7;
const int INF = 1061109567;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
int x = 0; int w = 1; register char c = getchar();
for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
if(c == '-') w = -1, c = getchar();
for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
int N,M,K,Ans;
int status[40],cnt,sta,_j,_k,exist[40];
struct Matrix{
int a[40][40];
inline void clear(){
memset(a,0,sizeof a);
}
inline void set_unit(){
memset(a,0,sizeof a);
for(int i = 0; i <= 32; ++i){
a[i][i] = 1;
}
}
};
inline Matrix mul(const Matrix a, const Matrix b){
Matrix tmp,res; tmp.clear(),res.clear();
for(int i = 0; i <= 32; ++i){
for(int j = 0; j <= 32; ++j){
for(int k = 0; k <= 32; ++k){
tmp.a[i][j] = (tmp.a[i][j] + a.a[i][k] * b.a[k][j]) % MOD;
}
}
}
for(int i = 0; i <= 32; ++i){
for(int j = 0; j <= 32; ++j){
res.a[i][j] = tmp.a[i][j];
}
}
return res;
}
Matrix ans,a;
inline bool check(int s){
int res(0);
while(s){
if(s & 1) ++res;
s >>= 1;
}
return res <= K;
}
void dfs(int x, int s){
if(x == M){
if(check(s)){
status[++cnt] = s;
a.a[(s>>1)+(1<<(M-1))][s] = 1;
a.a[s>>1][s] = 1;
exist[s] = 1;
}
return;
}
dfs(x+1, s);
dfs(x+1, s+(1<<x));
}
inline void ksm(int k){
while(k > 0){
if(k & 1) ans = mul(ans, a);
a = mul(a, a);
k /= 2;
}
}
signed main(){
N = read(), M = read(), K = read();
dfs(0, 0);
ans.set_unit();
ksm(N);
for(int i = 0; i <= 32; ++i){
if(exist[i]){
Ans = (Ans + ans.a[i][i]) % MOD;
}
}
printf("%lld", Ans);
return 0;
}
[洛谷P1357] 花园的更多相关文章
- 题解:洛谷P1357 花园
题解:洛谷P1357 花园 Description 小 L 有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为 \(1∼n\).花园 \(1\) 和 \(n\) 是相邻的. 他的环形花园每天都会换 ...
- 洛谷 P1357 花园 解题报告
P1357 花园 题目描述 小\(L\)有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为\(1~N(2<=N<=10^{15})\).他的环形花园每天都会换一个新花样,但他的花园都不 ...
- 洛谷P1357 花园(状态压缩 + 矩阵快速幂加速递推)
题目链接:传送门 题目: 题目描述 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(<=N<=^).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻 ...
- 洛谷 P1357 花园
题意简述 一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 题解思路 由于\(m<=5\)所以很显然状压 但由于\(n<=10^{15}\).可以考虑用矩阵加 ...
- 洛谷教主花园dp
洛谷-教主的花园-动态规划 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价 ...
- 洛谷 P2056 BZOJ 2743 [HEOI2012]采花
//表示真的更喜欢洛谷的题面 题目描述 萧芸斓是 Z国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花.花园足够大,容纳了 n 朵花,花有 c 种颜色(用整数 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
随机推荐
- 转:从输入url到显示网页发生了什么
在浏览器中输入url到显示网页主要包含两个部分: 网络通信和页面渲染 互联网内各网络设备间的通信都遵循TCP/IP协议,利用TCP/IP协议族进行网络通信时,会通过分层顺序与对方进行通信.分层由高到低 ...
- iOS----------教你如何使用 GitHub Desktop
1.先创建一个工程项目Test 2.创建一个仓库Repository 3.提交到master(记得写标题) 4.推送到github上 5.创建仓库Respository成功
- [20190415]11g下那些latch是共享的.txt
[20190415]11g下那些latch是共享的.txt http://andreynikolaev.wordpress.com/2010/11/23/shared-latches-by-oracl ...
- 关于sqlserver字符类型查询条件区分大小写
在写sql的查询时 如下: select * from Users where username='WangE' select * from Users where username='wange' ...
- VS2017 EF本地数据库链接
1. 本地数据库连接 server name可以从链接字符串中取: (localdb)\MSSQLLocalDB 注意少写一个\. { "Logging": { "Inc ...
- Win10 - MySQL 10061 错误
Win10 - MySQL 10061 错误 报错内容为: Can't connect to MySQL server on localhost (10061) 参考 : MySQL问题记录--Can ...
- Python操作MySQL:pymysql模块
连接MySQL有两个模块:mysqldb和pymysql,第一个在Python3.x上不能用,所以我们学pymysql import pymysql # 创建连接 conn = pymysql.con ...
- 通过ip查询自己电脑的共享文件夹
查看电脑所有的共享文件或文件夹的三种方法如下: 方法一. 右键点击网上邻居,点击属性进入网上邻居属性页面. 选中本地连接,在窗口的左下方有详细信息,可以看到内网IP,记住IP地址. 直接在地址栏输入记 ...
- Netty(RPC高性能之道)原理剖析
转载:http://blog.csdn.net/zhiguozhu/article/details/50517551 1,Netty简述 Netty 是一个基于 JAVA NIO 类库的异步通信框架, ...
- web框架开发-快速认识Django中间件
中间件 中间件的概念 中间件顾名思义,是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出. 因为改变的是全局,所以需要谨慎实用,用不 ...