Jury Compromise
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 33737   Accepted: 9109   Special Judge

Description

In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of members of the general public. Every time a trial is set to begin, a jury has to be selected, which is done as follows. First, several people are drawn randomly from the public. For each person in this pool, defence and prosecution assign a grade from 0 to 20 indicating their preference for this person. 0 means total dislike, 20 on the other hand means that this person is considered ideally suited for the jury. 
Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties. 
We will now make this more precise: given a pool of n potential jurors and two values di (the defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,..., n} with m elements, then D(J ) = sum(dk) k belong to J 
and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution. 
For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties. 
You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.

Input

The input file contains several jury selection rounds. Each round starts with a line containing two integers n and m. n is the number of candidates and m the number of jury members. 
These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next. 
The file ends with a round that has n = m = 0.

Output

For each round output a line containing the number of the jury selection round ('Jury #1', 'Jury #2', etc.). 
On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number. 
Output an empty line after each test case.

Sample Input

4 2
1 2
2 3
4 1
6 2
0 0

Sample Output

Jury #1
Best jury has value 6 for prosecution and value 4 for defence:
2 3

Hint

If your solution is based on an inefficient algorithm, it may not execute in the allotted time.

Source

 
题意:
从n个人中选m个人,要求sum1-sum2最小,sum1+sum2最大.
思路:
现用dp(j, k)表示,取j 个候选人,使其辩控差为k 的所有方案中,辩控和最大的那个方案(该方案称为“方案dp(j, k)”)的辩控和。
可行方案dp(j-1, x)能演化成方案dp(j, k)的必要条件是:存在某个候选人i,i 在方案dp(j-1, x)中没有被选上,且x+V(i) = k。在所有满足该必要条件的dp(j-1, x)中,选出 dp(j-1, x) + S(i) 的值最大的那个,那么方案dp(j-1, x)再加上候选人i,就演变成了方案 dp(j, k)。
 
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)+1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
int n,m;
int dp[][];
int num1[],num2[],sum[],diff[];
int path[][];
int fix = ; bool check(int i,int k,int j){
while(i&&path[i][k]!=j){
k-=diff[path[i][k]];
i--;
}
return i==;
} int main()
{
// ios::sync_with_stdio(false);
// freopen("in.txt","r",stdin);
int cases=;
while(scanf("%d%d",&n,&m)!=EOF&&(n||m)){
vector<int>ans;
for(int i=;i<=n;i++){
scanf("%d%d",&num1[i],&num2[i]);
sum[i]=num1[i]+num2[i];
diff[i]=num1[i]-num2[i];
}
memset(dp,-,sizeof(dp)); dp[][fix]=;
for(int i=;i<=m;i++){
for(int k=;k<=*fix;k++){
if(dp[i-][k]<){continue;}
for(int j=;j<=n;j++){
if(dp[i][k+diff[j]]<dp[i-][k]+sum[j]&&check(i-,k,j)){
dp[i][k+diff[j]]=dp[i-][k]+sum[j];
path[i][k+diff[j]]=j;
}
}
}
}
int minn=,maxx=;
for(int i=;i<=fix;i++){
// cout<<dp[m][fix-i];
if(dp[m][fix-i]>=||dp[m][fix+i]>=){
minn=i;break;
}
}
int rec=;
if(dp[m][fix-minn]>dp[m][fix+minn]){
rec=fix-minn;
maxx=dp[m][fix-minn];
}
else{
rec=fix+minn;
maxx=dp[m][fix+minn];
}
int ans1,ans2;
ans1=ans2=;
while(m){
ans.push_back(path[m][rec]);
ans1+=num1[path[m][rec]];
ans2+=num2[path[m][rec]];
rec-=diff[path[m][rec]];
m--;
}
cases++;
printf("Jury #%d\n",cases);
printf("Best jury has value %d for prosecution and value %d for defence:\n",ans1,ans2);
sort(ans.begin(),ans.end());
int sz=ans.size();
for(int i=;i<sz;i++){
printf(" %d",ans[i]);
}
printf("\n\n");
} return ;
}

POJ 1015 Jury Compromise(双塔dp)的更多相关文章

  1. POJ 1015 Jury Compromise(dp坑)

    提议:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团.选m人的办法是:控方和辩方会根据对候选 ...

  2. POJ 1015 Jury Compromise【DP】

    罗大神说这题很简单,,,,然而我着实写的很难过... 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#proble ...

  3. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  4. OpenJudge 2979 陪审团的人选 / Poj 1015 Jury Compromise

    1.链接地址: http://bailian.openjudge.cn/practice/2979 http://poj.org/problem?id=1015 2.题目: 总Time Limit: ...

  5. poj 1015 Jury Compromise(背包+方案输出)

    \(Jury Compromise\) \(solution:\) 这道题很有意思,它的状态设得很...奇怪.但是它的数据范围实在是太暴露了.虽然当时还是想了好久好久,出题人设了几个限制(首先要两个的 ...

  6. POJ 1015 Jury Compromise dp分组

    第一次做dp分组的问题,百度的~~ http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑 ...

  7. poj 1015 Jury Compromise(背包变形dp)

    In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of ...

  8. POJ 1015 Jury Compromise dp

    大致题意: 从n个候选人中选出m个人作为陪审团.为了让陪审团的选择更公平,辩方和控方都为这n个候选人给出了满意度(辩方为D[j],控方为P[j],范围0至20).现在要使得选出的m位候选人的辩方总和与 ...

  9. HDU POJ 1015 Jury Compromise(陪审团的人选,DP)

    题意: 在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团.选m人的办法是:控方和辩方会根据对候 ...

随机推荐

  1. 使用 Browser-solidity 在 Go-Ethereum1.7.2 上进行简单的智能合约部署

    目录 目录 1.基本概念 1.1.什么是智能合约? 1.2.什么是Solidity? 1.2.1.Solidity的语言特性 1.3.什么是 Browser-solidity? 2.Browser-s ...

  2. Linux安装配置vsftp搭建FTP的详细配置

    这里主要是说vsftp的配置:基础的可以参考Linux中VSFTP的配置 转自:https://www.jb51.net/article/103904.htm 修改配置文件 配置文件/etc/vsft ...

  3. Oracle 12c RAC 静默安装文档

    参考文档: https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwlin/index.html https://docs. ...

  4. Linux分页机制之概述--Linux内存管理(六)

    1 分页机制 在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address). 很显然,这个页表是需要常驻内 ...

  5. 利用ZYNQ SOC快速打开算法验证通路(4)——AXI DMA使用解析及环路测试

    一.AXI DMA介绍 本篇博文讲述AXI DMA的一些使用总结,硬件IP子系统搭建与SDK C代码封装参考米联客ZYNQ教程.若想让ZYNQ的PS与PL两部分高速数据传输,需要利用PS的HP(高性能 ...

  6. django 静态文件的配置

    静态文件简介 一.准备文件 Jquery3.3.1文件,文件目录创建 二.创建过程如图 STATIC_URL = '/static/' #静态文件的别名 STATICFILES_DIRS=[ os.p ...

  7. UVALive - 3523 - Knights of the Round Table

    Problem  UVALive - 3523 - Knights of the Round Table Time Limit: 4500 mSec Problem Description Input ...

  8. PHP命令执行与防范

    命令执行漏洞是指攻击者可以随意执行系统命令,是高危漏洞之一. 命令连接符:&  &&   ||     | 如:ping www.baidu.com && ne ...

  9. keras 中模型的保存

    参考:https://www.cnblogs.com/weiyinfu/p/9788179.html#0 1.model.summary() 这个函数会打印模型结构,但是仅仅是打印到控制台,不能保存 ...

  10. 【Topcoder 8572】TheLuckySum

    题意:给一个数\(n\),要把它分成lucky numbers的和. 问个数最少.字典序最小的方案. 思路:果断搜索.个数最少,所以迭代加深.枚举要的个数\(m\). 首先我们看\(n\)的个位.它肯 ...