题目链接:https://jzoj.net/senior/#main/show/6101

记\(f_i\)为从\(i\)号点走到\(n\)号点所花天数的期望

那么根据\(m\)条边等可能的出现一条和一定会往期望值较小的点走的贪心策略我们可以得到

\[f_i=\frac{1}{m}\sum min(f_i,f_j)+1
\]

其中当\(i,j\)不相连的时候可将\(f_j\)看做无限大

我们考虑在该式子中一共选取了\(sum\)次\(f_j\),也就是\(m-sum\)次\(f_i\),那么

\[f_i=\frac{1}{m}(\sum _{f_j<f_i}f_j+(m-sum)*f_i)+1
\]

两边同时乘\(m\)并移项

\[sum*f_i=\sum f_j+m
\]

\[f_i=\frac{\sum f_j+m}{sum}
\]

我们将\(f_i\)看做到\(n\)点的距离,直接跑最短路,当从队列首部拎出来的\(u\)存在一条边\((u,v)\)使得当前的\(f_v\)比\(f_u\)大时就更新答案

那么我们如何维护这个优先队列呢?

我们假设当前用\(f_k\)去更新\(f_i\),那么就会有

\[\frac{\sum f_j+m+f_k}{sum+1}<\frac{\sum f_j+m}{sum}
\]

去分母化简得到

\[f_k<\frac{\sum f_j+m}{sum}
\]

所以直接按照\(\frac{\sum f_j+m}{sum}\)的值从小到大维护该队列即可

#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define lowbit(x) (x)&(-x)
#define rep(i,a,b) for (int i=a;i<=b;i++)
#define per(i,a,b) for (int i=a;i>=b;i--)
#define maxd 1000000007
typedef long long ll;
const int N=100000;
const double pi=acos(-1.0);
struct node{
int to,nxt;
}sq[200200]; struct hnode{
int u,sum;double f;
};
bool operator<(const hnode &p,const hnode &q)
{
return p.f*q.sum>q.f*p.sum;
}
priority_queue<hnode> q;
int n,m,all=0,head[100100],sum[100100];
double f[100100];
bool vis[100100]; int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
} void add(int u,int v)
{
all++;sq[all].to=v;sq[all].nxt=head[u];head[u]=all;
} double dij()
{
memset(vis,0,sizeof(vis));
sum[n]=1;q.push((hnode){n,1,0});
while (!q.empty())
{
int u=q.top().u;q.pop();
if (vis[u]) continue;
vis[u]=1;int i;
double now=(f[u]+m)/sum[u];
if (u==1) return (f[u]+m)/sum[u];
else if (u==n) now=0;
for (i=head[u];i;i=sq[i].nxt)
{
int v=sq[i].to;
if ((sum[v]==0) || ((f[v]+m)>now*sum[v]))
{
f[v]+=now;sum[v]++;
if (!vis[v]) q.push((hnode){v,sum[v],f[v]+m});
}
}
}
} int main()
{
freopen("path.in","r",stdin);
freopen("path.out","w",stdout);
n=read();m=read();
rep(i,1,m)
{
int u=read(),v=read();
add(u,v);add(v,u);
}
double ans=dij();
printf("%0.8lf",ans);
return 0;
}

jzoj6101. 【GDOI2019模拟2019.4.2】Path的更多相关文章

  1. [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)

    题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...

  2. jzoj6099. 【GDOI2019模拟2019.4.1】Dist

    题目链接:https://jzoj.net/senior/#main/show/6099 考虑直接统计某个点到其它所有点的距离和 我们先把整个团当成一个点建图,处理出任意两个团之间的距离\(dis(i ...

  3. [JZOJ6075]【GDOI2019模拟2019.3.20】桥【DP】【线段树】

    Description N,M<=100000,S,T<=1e9 Solution 首先可以感受一下,我们把街道看成一行,那么只有给出的2n个点的纵坐标是有用的,于是我们可以将坐标离散化至 ...

  4. [jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)

    题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 ...

  5. [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)

    题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...

  6. [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)

    题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...

  7. [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)

    题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...

  8. [jzoj 4528] [GDOI2019模拟2019.3.26] 要换换名字 (最大权闭合子图)

    题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联 ...

  9. [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)

    题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...

随机推荐

  1. iOS----------取数据的两种取法

    NSMutableArray * dataArray =[responseDictionary valueForKeyPath:@"data.list_dic.list"]; NS ...

  2. Android Studio集成Flutter

    首先Flutter中文网教程地址:https://flutterchina.club/get-started/install/ 1.新建环境变量 变量名:PUB_HOSTED_URL 变量值:http ...

  3. Python使用Plotly绘图工具,绘制气泡图

    今天来讲讲如何使用Python 绘图工具,Plotly来绘制气泡图. 气泡图的实现方法类似散点图的实现.修改散点图中点的大小,就变成气泡图. 实现代码如下: import plotly as py i ...

  4. Spark之Yarn提交模式

    一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examp ...

  5. 高端内存映射之vmalloc分配内存中不连续的页--Linux内存管理(十九)

    1 内存中不连续的页的分配 根据上文的讲述, 我们知道物理上连续的映射对内核是最好的, 但并不总能成功地使用. 在分配一大块内存时, 可能竭尽全力也无法找到连续的内存块. 在用户空间中这不是问题,因为 ...

  6. c/c++ 多线程 detach的困惑

    多线程 detach的困惑 求大神解答: 1,当在一个函数里启动一个线程后,并detach了 2,detach的线程里使用了这个函数里new出来的一个对象 3,detach后,delete了这个对象 ...

  7. 利用ZYNQ SOC快速打开算法验证通路(2)——数据传输最简方案:网络调试助手+W5500协议栈芯片

    在上一篇该系列博文中讲解了MATLAB待处理数据写入.bin二进制数据文件的过程,接下来需要将数据通过以太网发送到ZYNQ验证平台.之前了解过Xilinx公司面向DSP开发的System Genera ...

  8. Flex builder4.6激活【转】

    方法一: 1.到Adobe官网下载FlashBuilder 4.6 http://download.adobe.com/pub/adobe/flex/win/FlashBuilder_4_6_LS10 ...

  9. Filebeat使用内置的mysql模块收集日志存储到ES集群并使用kibana存储

    Filebeat内置了不少的模块,可以直接使用他们对日志进行收集,支持的模块如下: [root@ELK-chaofeng07 logstash]# filebeat modules list Enab ...

  10. 怎样保证socket.recv接收完数据

    最近在使用python进行网络编程开发一个通用的tcpclient测试小工具.在使用socket进行网络编程中,如何判定对端发送一条报文是否接收完成,是进行socket网络开发必须要考虑的一个问题.这 ...