一、ELK实用知识点总结

1、编码转换问题

这个问题,主要就是中文乱码。

input中的codec=>plain转码:

codec => plain {
charset => "GB2312"
}

将GB2312的文本编码,转为UTF-8的编码。

也可以在filebeat中实现编码的转换(推荐):

filebeat.prospectors:

- input_type: log

paths:

- c:UsersAdministratorDesktopperformanceTrace.txt

encoding: GB2312

2、删除多余日志中的多余行

logstash filter中drop删除:

if ([message] =~ "^20.*- task request,.*,start time.*") { #用正则需删除的多余行

drop {}

}

日志示例:

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 #需删除的行

-- Request String :

{"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

3、grok处理多种日志不同的行

日志示例:

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

-- Request String :

{"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

在logstash filter中grok分别处理3行:

match => {

"message" => "^20.*- task request,.*,start time:%{TIMESTAMP_ISO8601:RequestTime}"

match => {

"message" => "^-- Request String : {"UserName":"%{NUMBER:UserName:int}","Pwd":"(?<Pwd>.*)","DeviceType":%{NUMBER:DeviceType:int},"DeviceId":"(?<DeviceId>.*)","EquipmentNo":(?<EquipmentNo>.*),"SSID":(?<SSID>.*),"RegisterPhones":(?<RegisterPhones>.*),"AppKey":"(?<AppKey>.*)","Version":"(?<Version>.*)"} -- End.*"

}

match => {

"message" => "^-- Response String : {"ErrorCode":%{NUMBER:ErrorCode:int},"Success":(?<Success>[a-z]*),"ErrorMsg":(?<ErrorMsg>.*),"Result":(?<Result>.*),"WaitInterval":%{NUMBER:WaitInterval:int}} -- End.*"
}
... 等多行

4、日志多行合并处理—multiline插件(重点)

示例:

①日志

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

-- Request String :

{"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

②logstash grok对合并后多行的处理。合并多行后续都一样,如下:

filter {

 grok {

    match => {

    "message" => "^%{TIMESTAMP_ISO8601:InsertTime} .*- task request,.*,start time:%{TIMESTAMP_ISO8601:RequestTime}
-- Request String : {"UserName":"%{NUMBER:UserName:int}","Pwd":"(?<Pwd>.*)","DeviceType":%{NUMBER:DeviceType:int},"DeviceId":"(?<DeviceId>.*)","EquipmentNo":(?<EquipmentNo>.*),"SSID":(?<SSID>.*),"RegisterPhones":(?<RegisterPhones>.*),"AppKey":"(?<AppKey>.*)","Version":"(?<Version>.*)"} -- End
-- Response String : {"ErrorCode":%{NUMBER:ErrorCode:int},"Success":(?<Success>[a-z]*),"ErrorMsg":(?<ErrorMsg>.*),"Result":(?<Result>.*),"WaitInterval":%{NUMBER:WaitInterval:int}} -- End"

      }

      }

}

在filebeat中使用multiline插件(推荐):

①介绍multiline

  • pattern:正则匹配从哪行合并;

  • negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并。

  • match:after/before(需自己理解)

  • after:匹配到pattern 部分后合并,注意:这种情况最后一行日志不会被匹配处理;

  • before:匹配到pattern 部分前合并(推荐)。

②5.5版本之后(before为例)

filebeat.prospectors:

- input_type: log

paths:

- /root/performanceTrace*

fields:

type: zidonghualog

multiline.pattern: '.*"WaitInterval":.*-- End'

multiline.negate: true

multiline.match: before

③5.5版本之前(after为例)

filebeat.prospectors:

- input_type: log

paths:

- /root/performanceTrace*

input_type: log

multiline:

pattern: '^20.*'

negate: true

match: after

在logstash input中使用multiline插件(没有filebeat时推荐):

①介绍multiline

  • pattern:正则匹配从哪行合并;

  • negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并。

  • what:previous/next(需自己理解)

  • previous:相当于filebeat 的after;

  • next:相当于filebeat 的before。

②用法

input {

    file {

        path => ["/root/logs/log2"]

        start_position => "beginning"

        codec => multiline {

            pattern => "^20.*"

            negate => true

            what => "previous"

}

}

}

在logstash filter中使用multiline插件(不推荐):

不推荐的原因:

  • filter设置multiline后,pipline worker会自动降为1;

  • 5.5 版本官方把multiline 去除了,要使用的话需下载,下载命令如下:

/usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline

示例:

filter {

  multiline {

  pattern => "^20.*"

  negate => true

  what => "previous"

  }

}

5、logstash filter中的date使用

日志示例:

2018-03-20 10:44:01 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

date使用:

date {

      match => ["InsertTime","YYYY-MM-dd HH:mm:ss "]

      remove_field => "InsertTime"

}

注:match => ["timestamp" ,"dd/MMM/YYYY HⓂ️s Z"]

匹配这个字段,字段的格式为:日日/月月月/年年年年 时/分/秒 时区,也可以写为:match => ["timestamp","ISO8601"](推荐)

date介绍:

就是将匹配日志中时间的key替换为@timestamp的时间,因为@timestamp的时间是日志送到logstash的时间,并不是日志中真正的时间。

6、对多类日志分类处理(重点)

在filebeat的配置中添加type分类:

filebeat:

prospectors:

-

paths:

#- /mnt/data/WebApiDebugLog.txt*

- /mnt/data_total/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_total

-

paths:

- /mnt/data_request/WebApiDebugLog.txt*

#- /mnt/data/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_request

-

paths:

- /mnt/data_report/WebApiDebugLog.txt*

#- /mnt/data/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_report

在logstash filter中使用if,可进行对不同类进行不同处理:

filter {

        if [fields][type] == "WebApiDebugLog_request" {                 #对request 类日志

      if ([message] =~ "^20.*- task report,.*,start time.*") {                 #删除report 行

        drop {}

              }

          grok {

          match => {"... ..."}

            }

}

在logstash output中使用if:

if [fields][type] == "WebApiDebugLog_total" {

      elasticsearch {

          hosts => ["6.6.6.6:9200"]

          index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}"

          document_type => "WebApiDebugLog_total_logs"

}

二、对ELK整体性能的优化

1、性能分析

服务器硬件Linux:1cpu4GRAM

假设每条日志250Byte。

分析:

①logstash-Linux:1cpu 4GRAM

  • 每秒500条日志;

  • 去掉ruby每秒660条日志;

  • 去掉grok后每秒1000条数据。

②filebeat-Linux:1cpu 4GRAM

  • 每秒2500-3500条数据;

  • 每天每台机器可处理:24h60min60sec* 3000*250Byte=64,800,000,000Bytes,约64G。

瓶颈在logstash从Redis中取数据存入ES,开启一个logstash,每秒约处理6000条数据;开启两个logstash,每秒约处理10000条数据(cpu已基本跑满);

logstash的启动过程占用大量系统资源,因为脚本中要检查java、ruby以及其他环境变量,启动后资源占用会恢复到正常状态。

2、关于收集日志的选择:logstash/filter

没有原则要求使用filebeat或logstash,两者作为shipper的功能是一样的。

区别在于:

  • logstash由于集成了众多插件,如grok、ruby,所以相比beat是重量级的;

  • logstash启动后占用资源更多,如果硬件资源足够则无需考虑二者差异;

  • logstash基于JVM,支持跨平台;而beat使用golang编写,AIX不支持;

  • AIX 64bit平台上需要安装jdk(jre) 1.7 32bit,64bit的不支持;

  • filebeat可以直接输入到ES,但是系统中存在logstash直接输入到ES的情况,这将造成不同的索引类型造成检索复杂,最好统一输入到els 的源。

总结:

logstash/filter总之各有千秋,但是我推荐选择:在每个需要收集的日志服务器上配置filebeat,因为轻量级,用于收集日志;再统一输出给logstash,做对日志的处理;最后统一由logstash输出给els。

3、logstash的优化相关配置

可以优化的参数,可根据自己的硬件进行优化配置:

①pipeline线程数,官方建议是等于CPU内核数

  • 默认配置 ---> pipeline.workers: 2;

  • 可优化为 ---> pipeline.workers: CPU内核数(或几倍CPU内核数)。

②实际output时的线程数

  • 默认配置 ---> pipeline.output.workers: 1;

  • 可优化为 ---> pipeline.output.workers: 不超过pipeline线程数。

③每次发送的事件数

  • 默认配置 ---> pipeline.batch.size: 125;

  • 可优化为 ---> pipeline.batch.size: 1000。

④发送延时

  • 默认配置 ---> pipeline.batch.delay: 5;

  • 可优化为 ---> pipeline.batch.size: 10。

总结:

通过设置-w参数指定pipeline worker数量,也可直接修改配置文件logstash.yml。这会提高filter和output的线程数,如果需要的话,将其设置为cpu核心数的几倍是安全的,线程在I/O上是空闲的。

默认每个输出在一个pipeline worker线程上活动,可以在输出output中设置workers设置,不要将该值设置大于pipeline worker数。

还可以设置输出的batch_size数,例如ES输出与batch size一致。

filter设置multiline后,pipline worker会自动将为1,如果使用filebeat,建议在beat中就使用multiline,如果使用logstash作为shipper,建议在input中设置multiline,不要在filter中设置multiline。

Logstash中的JVM配置文件:

Logstash是一个基于Java开发的程序,需要运行在JVM中,可以通过配置jvm.options来针对JVM进行设定。比如内存的最大最小、垃圾清理机制等等。JVM的内存分配不能太大不能太小,太大会拖慢操作系统。太小导致无法启动。默认如下:

  • Xms256m#最小使用内存;

  • Xmx1g#最大使用内存。

4、引入Redis的相关问题

filebeat可以直接输入到logstash(indexer),但logstash没有存储功能,如果需要重启需要先停所有连入的beat,再停logstash,造成运维麻烦;另外如果logstash发生异常则会丢失数据;引入Redis作为数据缓冲池,当logstash异常停止后可以从Redis的客户端看到数据缓存在Redis中;

Redis可以使用list(最长支持4,294,967,295条)或发布订阅存储模式;

Redis做ELK缓冲队列的优化:

  • bind 0.0.0.0 #不要监听本地端口;

  • requirepass ilinux.io #加密码,为了安全运行;

  • 只做队列,没必要持久存储,把所有持久化功能关掉:

    快照(RDB文件)和追加式文件(AOF文件),性能更好;

    save "" 禁用快照;

    appendonly no 关闭RDB。

  • 把内存的淘汰策略关掉,把内存空间最大

    maxmemory 0 #maxmemory为0的时候表示我们对Redis的内存使用没有限制。

5、Elasticsearch节点优化配置

服务器硬件配置,OS参数:

1)/etc/sysctl.conf 配置

vim /etc/sysctl.conf

① vm.swappiness = 1
#ES 推荐将此参数设置为 1,大幅降低 swap 分区的大小,强制最大程度的使用内存,注意,这里不要设置为 0, 这会很可能会造成 OOM

② net.core.somaxconn = 65535
#定义了每个端口最大的监听队列的长度

③ vm.max_map_count= 262144
#限制一个进程可以拥有的VMA(虚拟内存区域)的数量。虚拟内存区域是一个连续的虚拟地址空间区域。当VMA 的数量超过这个值,OOM

④ fs.file-max = 518144
#设置 Linux 内核分配的文件句柄的最大数量

[root@elasticsearch]# sysctl -p生效一下。

2)limits.conf 配置

vim /etc/security/limits.conf
elasticsearch soft nofile 65535
elasticsearch hard nofile 65535
elasticsearch soft memlock unlimited
elasticsearch hard memlock unlimited

3)为了使以上参数永久生效,还要设置两个地方:

vim /etc/pam.d/common-session-noninteractive

vim /etc/pam.d/common-session

添加如下属性:

session required pam_limits.so

可能需重启后生效。

Elasticsearch中的JVM配置文件

-Xms2g

-Xmx2g

  • 将最小堆大小(Xms)和最大堆大小(Xmx)设置为彼此相等。

  • Elasticsearch可用的堆越多,可用于缓存的内存就越多。但请注意,太多的堆可能会使您长时间垃圾收集暂停。

  • 设置Xmx为不超过物理RAM的50%,以确保有足够的物理内存留给内核文件系统缓存。

  • 不要设置Xmx为JVM用于压缩对象指针的临界值以上;确切的截止值有所不同,但接近32 GB。不要超过32G,如果空间大,多跑几个实例,不要让一个实例太大内存。

Elasticsearch配置文件优化参数:

vim elasticsearch.yml

bootstrap.memory_lock: true
#锁住内存,不使用swap

#缓存、线程等优化如下
bootstrap.mlockall: true
transport.tcp.compress: true
indices.fielddata.cache.size: 40%
indices.cache.filter.size: 30%
indices.cache.filter.terms.size: 1024mb
threadpool:
search:
type: cached
size: 100
queue_size: 2000

设置环境变量

vim /etc/profile.d/elasticsearch.sh export ES_HE AP _SIZE=2g #Heap Size不超过物理内存的一半,且小于32G。

集群的优化(我未使用集群):

  • ES是分布式存储,当设置同样的cluster.name后会自动发现并加入集群;

  • 集群会自动选举一个master,当master宕机后重新选举;

  • 为防止"脑裂",集群中个数最好为奇数个;

  • 为有效管理节点,可关闭广播discovery. zen.ping.multicast.enabled: false,并设置单播节点组discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]。

6、性能的检查

检查输入和输出的性能:

Logstash和其连接的服务运行速度一致,它可以和输入、输出的速度一样快。

检查系统参数:

1)CPU

  • 注意CPU是否过载。在Linux/Unix系统中可以使用top-H查看进程参数以及总计。

  • 如果CPU使用过高,直接跳到检查JVM堆的章节并检查Logstash worker设置。

2)Memory

  • 注意Logstash是运行在Java虚拟机中的,所以它只会用到你分配给它的最大内存。

  • 检查其他应用使用大量内存的情况,这将造成Logstash使用硬盘swap,这种情况会在应用占用内存超出物理内存范围时。

3)I/O监控磁盘I/O检查磁盘饱和度

  • 使用Logstash plugin(例如使用文件输出)磁盘会发生饱和。

  • 当发生大量错误,Logstash生成大量错误日志时磁盘也会发生饱和。

  • 在Linux中,可使用iostat,dstat或者其他命令监控磁盘I/O。

4)监控网络I/O

  • 当使用大量网络操作的input、output时,会导致网络饱和。

  • 在Linux中可使用dstat或iftop监控网络情况。

检查JVM heap:

  • heap设置太小会导致CPU使用率过高,这是因为JVM的垃圾回收机制导致的。

  • 一个快速检查该设置的方法是将heap设置为两倍大小然后检测性能改进。不要将heap设置超过物理内存大小,保留至少1G内存给操作系统和其他进程。

  • 你可以使用类似jmap命令行或VisualVM更加精确的计算JVM heap。

ELK_疑难杂症处理的更多相关文章

  1. Carousel 旋转画廊特效的疑难杂症

    疑难杂症 该画廊特效的特点就是前后元素有层级关系. 我想很多人应该看过或者用过这个插件carousel.js,网上也有相关的教程.不知道这个插件的原型是哪个,有知道的朋友可以告诉我. 该插件相对完美, ...

  2. TCP协议疑难杂症全景解析

    说明: 1).本文以TCP的发展历程解析容易引起混淆,误会的方方面面2).本文不会贴大量的源码,大多数是以文字形式描述,我相信文字看起来是要比代码更轻松的3).针对对象:对TCP已经有了全面了解的人. ...

  3. [Swift] 疑难杂症

    [Swift] 疑难杂症 1.class  .... has no initializers -->  class 的每一个元素都需要初始化,否则会报错,除了可空元素

  4. 十个Flex/Air疑难杂症及解决方案简略

    十个Flex/Air疑难杂症及解决方案简略 转自http://blog.sban.us/40.html 最近去一家台企,对方给我出了十道“难道”:在TileList中如果選擇檔過多,會出現捲軸,當拖動 ...

  5. C# (事件触发)回调函数,完美处理各类疑难杂症!

    每次写博客,第一句话都是这样的:程序员很苦逼,除了会写程序,还得会写博客! 废话说多了...... 嘿嘿:本篇标题为:C#  (事件触发)回调函数,完美处理各类疑难杂症.个人理解如下:事件触发也就是触 ...

  6. 使用truss、strace或ltrace诊断软件的“疑难杂症”

    简介 进程无法启动,软件运行速度突然变慢,程序的"Segment Fault"等等都是让每个Unix系统用户头痛的问题,本文通过三个实际案例演示如何使用truss.strace和l ...

  7. 【转载】TCP协议疑难杂症全景解析

    说明: 1).本文以TCP的发展历程解析容易引起混淆,误会的方方面面2).本文不会贴大量的源码,大多数是以文字形式描述,我相信文字看起来是要比代码更轻松的3).针对对象:对TCP已经有了全面了解的人. ...

  8. IE-“无法浏览网页” 教你十招解决疑难杂症

    “无法浏览网页” 教你十招解决疑难杂症 相信大家也有遇到过像IE不能上网浏览的问题.下面就来给大家介绍一下常见原因和解决方法: 一.网络设置的问题 这种原因比较多出现在需要手动指定IP.网关.DNS服 ...

  9. UDP协议疑难杂症全景解析

    转载:http://blog.csdn.net/dog250/article/details/6896949 UDP协议疑难杂症全景解析 2011-10-22 19:26 2989人阅读 评论(4)  ...

随机推荐

  1. HBase从入门到精通系列:误删数据如何抢救?

    云栖君导读:有时候我们操作数据库的时候不小心误删数据,这时候如何找回?mysql里有binlog可以帮助我们恢复数据,但是没有开binlog也没有备份就尴尬了.如果是HBase,你没有做备份误删了又如 ...

  2. 模块化CommonJs规范 part1

    CommonJS规范 来自<JavaScript 标准参考教程(alpha)>,by 阮一峰 1.概述 Node 应用由模块组成,采用 CommonJS 模块规范. 每个文件就是一个模块, ...

  3. SpringBoot项目 org.springframework.boot.context.embedded.EmbeddedServletContainerException: Unable to start embedded Jetty servlet container报错

    SpringBoot项目启动报错 ERROR 2172 --- [ main] o.s.boot.SpringApplication : Application startup failed org. ...

  4. SQLite数据库以及增删改查的案例

    Android使用开源的与操作系统无关的SQL数据库——SQLite 一:在命令行下创建数据库: 1.启动模拟器后,打开命令行,执行adb shell 2.进入所在工程目录 3.执行sqlite3 m ...

  5. 洛谷 P1964 【mc生存】卖东西(多重背包)

    题目传送门 解题思路: 题目里有,多重背包. AC代码: #include<iostream> #include<cstdio> #include<map> usi ...

  6. 吴裕雄--天生自然TensorFlow2教程:前向传播(张量)- 实战

    手写数字识别流程 MNIST手写数字集7000*10张图片 60k张图片训练,10k张图片测试 每张图片是28*28,如果是彩色图片是28*28*3-255表示图片的灰度值,0表示纯白,255表示纯黑 ...

  7. IO读写

    1.read & write read: 把数据从内核缓冲区复制到进程缓冲区. write: 把数据从进程缓冲区复制到内核缓冲区. 上层程序的IO操作.不是物理设备级别的读写,而是缓存的复制. ...

  8. css常见符号

    * 通配符使用星号*表示,意思是“所有的” 比如:* { color : red; } 这里就把所有元素的字体设置为红色 缺点: 不过,由于*会匹配所有的元素,这样会影响网页渲染的时间 解决: res ...

  9. 查路由途径 traceroute tracert

    linux 用  traceroute IP windows用 tracert IP 虚拟机下使用无效

  10. Tomcat启动报内存溢出错误:java.lang.OutOfMemoryError: PermGen space

    windows操作系统 找到D:\Tomcat-7\apache-tomcat-7.0.28\bin(解压安装的Tomcat)目录下的catalina.bat文件,打开该文件,找到下图所示的内容:添加 ...