二叉堆可以看做一个近似的完全二叉树,所以一般用数组来组织。

二叉堆可以分为两种形式:最大堆和最小堆。最大堆顾名思义,它的每个结点的值不能超过其父结点的值,因此堆中最大元素存放在根结点中。最小堆的组织方式刚好与最大堆相反,它的最小元素存放在根结点中。

维护堆性质最重要的两个算法就是向上维护和向下维护。简而言之,例如最大堆中根结点的值小于其子结点的值,这个时候就要向下维护,把根结点逐级下降到适合的位置。显而易见地,向上维护就是子结点的值比其父结点大时(最大堆中),将结点逐级上升到合适的位置。这两个方法保证堆的性质不会被破坏。

堆经常用来实现优先队列,最大堆就对应最大优先队列,最小堆同上。因为通过关键字来查找堆中具体元素的位置比较麻烦,所以一般通过在堆中存储对象的句柄,在对应的对象中也存储对应堆元素的句柄来直接定位到元素的位置。

二叉堆是堆中最容易实现的一种,也算是用的比较广泛的一种。我下面的代码给出了最大堆和最小堆的一部分关键操作,另外一部分则挑选其中一种来实现。

代码如下:(仅供参考)

 class Node {
public :
int value;
public :
Node(int v = ) : value(v) {}
}; class Heap {
vector<Node> heap;
int heap_size; int Left(int i) {return (i << ) + ;} //下标从0开始
int Right(int i) {return Left(i) + ;}
int Parent(int i) {return (i - ) >> ;}
void MaxHeapify(int i); //使结点i维持最大堆性质(向下维护)
void MinHeapify(int i); //使结点i维持最小堆性质(向下维护)
void IncreaseKey(int i, int k); //将结点i的value上升到k(向上维护)
public :
Heap() : heap_size() {}
Heap(vector<Node> &t) : heap(t), heap_size(t.size()) {}
void BuildMaxHeap(); //建立最大堆,时间复杂度O(n);
void BuildMinHeap(); //建立最小堆,时间复杂度O(n);
void MinHeapSort(); //从小到大排序,时间复杂度O(nlgn);
void MaxHeapSort(); //从大到小排序,时间复杂度O(nlgn);
//以下函数仅在最大堆下进行
void Insert(int k); //插入一个元素(最大堆)
void Delete(int i); //删除一个元素(最大堆)
Node Maximum(); //返回value最大的元素
Node ExtractMax(); //去掉并返回value最大的元素
//union two heap:union the vector of the two heaps, and call BuildMaxHeap()
int Size() {return heap.size();} //返回vector的元素个数
void PrintAll() {
for (auto i : heap)
cout << i.value << ends;
cout << endl;
}
}; void Heap::MaxHeapify(const int i) {
int largest;
if (Left(i) < heap_size && heap[Left(i)].value > heap[i].value)
largest = Left(i);
else
largest = i;
if (Right(i) < heap_size && heap[Right(i)].value > heap[largest].value)
largest = Right(i);
if (largest != i) {
swap(heap[i], heap[largest]);
MaxHeapify(largest);
}
} void Heap::MinHeapify(const int i) {
int least;
if (Left(i) < heap_size && heap[Left(i)].value < heap[i].value)
least = Left(i);
else
least = i;
if (Right(i) < heap_size && heap[Right(i)].value < heap[least].value)
least = Right(i);
if (least != i) {
swap(heap[i], heap[least]);
MinHeapify(least);
}
} void Heap::BuildMaxHeap() {
heap_size = heap.size();
for (int i = Parent(heap_size - ); i >= ; --i)
MaxHeapify(i);
} void Heap::BuildMinHeap() {
heap_size = heap.size();
for (int i = Parent(heap_size - ); i >= ; --i)
MinHeapify(i);
} void Heap::MinHeapSort() {
BuildMaxHeap();
for (int i = heap.size() - ; i > ; --i) {
swap(heap[i], heap[]);
--heap_size;
MaxHeapify();
}
} void Heap::MaxHeapSort() {
BuildMinHeap();
for (int i = heap.size() - ; i > ; --i) {
swap(heap[i], heap[]);
--heap_size;
MinHeapify();
}
} void Heap::Insert(int k) {
heap.push_back(INT_MIN);
IncreaseKey(heap.size() - , k);
} void Heap::Delete(int i) {
if (heap[heap.size() - ].value > heap[i].value) {
IncreaseKey(i, heap[heap.size() - ].value);
heap.pop_back();
} else {
heap[i] = heap[heap.size() - ];
heap.pop_back();
heap_size = heap.size();
MaxHeapify(i);
}
} Node Heap::Maximum() {
return heap[];
} Node Heap::ExtractMax() {
Node max = heap[];
heap[] = heap[heap.size() - ];
heap.pop_back();
MaxHeapify();
return max;
} void Heap::IncreaseKey(int i, int k) {
if (k <= heap[i].value)
return ;
while (i > && heap[Parent(i)].value < k) {
heap[i] = heap[Parent(i)];
i = Parent(i);
}
heap[i].value = k;
}

binary-heap(二叉堆)原理及C++代码实现的更多相关文章

  1. Binary Heap(二叉堆) - 堆排序

    这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我 ...

  2. 【数据结构与算法Python版学习笔记】树——利用二叉堆实现优先级队列

    概念 队列有一个重要的变体,叫作优先级队列. 和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的. 优先级最高的元素在最前,优先级最低的元素在最后. 实现优先级队列的经典方法是使 ...

  3. 堆(Heap)和二叉堆(Binary heap)

    堆(Heap) The operations commonly performed with a heap are: create-heap: create an empty heap heapify ...

  4. 二叉堆(binary heap)

    堆(heap) 亦被称为:优先队列(priority queue),是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.在队列中,调度程序反复提取队列中第一个作业并运行,因 ...

  5. 二叉堆(binary heap)—— 优先队列的实现

    二叉堆因为对应着一棵完全二叉树,因而可以通过线性数组的方式实现. 注意,数组第 0 个位置上的元素,作为根,还是第 1 个位置上的元素作为根? 本文给出的实现,以数组第 1 个位置上的元素作为根,则其 ...

  6. 数据结构 之 二叉堆(Heap)

    注:本节主要讨论最大堆(最小堆同理). 一.堆的概念     堆,又称二叉堆.同二叉查找树一样,堆也有两个性质,即结构性和堆序性.     1.结构性质:     堆是一棵被完全填满的二叉树,有可能的 ...

  7. C# 实现简单的 Heap 堆(二叉堆)

    如题,C#  实现简单的二叉堆的 Push() 和 Pop(), 如有不足欢迎指正. 另外,在C#中使用 Heap 的相似功能可以考虑使用:Priority Queues,SortedDictiona ...

  8. 【nodejs原理&源码杂记(8)】Timer模块与基于二叉堆的定时器

    [摘要] timers模块部分源码和定时器原理 示例代码托管在:http://www.github.com/dashnowords/blogs 一.概述 Timer模块相关的逻辑较为复杂,不仅包含Ja ...

  9. 【nodejs原理&源码杂记(8)】Timer模块与基于二叉堆的定时器

    目录 一.概述 二. 数据结构 2.1 链表 2.2 二叉堆 三. 从setTimeout理解Timer模块源码 3.1 timers.js中的定义 3.2 Timeout类定义 3.3 active ...

随机推荐

  1. 2,The AudioContext was not allowed to start.

    The AudioContext was not allowed to start. It must be resumed (or created) after a user gesture on t ...

  2. Python调用OpenCV读显写

    OpenCV提供了python的接口,而且很重要的一点是python下的很多接口名与C++的接口名是一样的,这一篇先记录python调用OpenCV去读取图像.显示图像和保存图像. 1.OpenCV读 ...

  3. Spring中的控制反转和依赖注入

    Spring中的控制反转和依赖注入 原文链接:https://www.cnblogs.com/xxzhuang/p/5948902.html 我们回顾一下计算机的发展史,从最初第一台计算机的占地面积达 ...

  4. F5 BIG-IPLTM但比组网的三种连接模式(转)

    原文链接:https://www.cnblogs.com/yujianadu/p/11850977.html作者:遇见阿杜

  5. selenium破解人人登陆验证码

    from selenium import webdriverfrom PIL import Imagefrom chaojiying import Chaojiying_Clientimport ti ...

  6. RNA分类|技术策略|终极目标

    如何在转录水平分类所有RNA分子?可以罗列所有的可能性.技术策略和终极目标. 可能性:见纸 技术策略:RNA单细胞直测技术 终极目标:单细胞水平RNA直测技术决定新的人类RNA组和人类表观组学两个核心 ...

  7. bzoj4311向量(线段树分治+斜率优化)

    第二道线段树分治. 首先设当前向量是(x,y),剩余有两个不同的向量(u1,v1)(u2,v2),假设u1>u2,则移项可得,若(u1,v1)优于(u2,v2),则-x/y>(v1-v2) ...

  8. fatal error C1189: #error: "You must define TF_LIB_GTL_ALIGNED_CHAR_ARRAY for your compiler."

    使用VS开发tensorflow的C++程序的时候,就可能会遇上这个问题,解决方法是在引入tensoflow的头文件之前添加: #define COMPILER_MSVC #define NOMINM ...

  9. [Python]h5py/__init__.py:36:

    个人博客地址:https://www.bearoom.xyz/2019/08/24/python-devolop-env-hdf5-problem/ 安装tensorflow之后,在导入tensorf ...

  10. 异常依然执行{try..catch语句块..}的后续代码

    测试异常依然执行{try..catch语句块..}的后续代码: private static Integer testThrows() throws Exception{ Integer result ...