传送门

Luogu

解题思路

这里着重介绍 \(O(n^3)\) 的做法,毕竟考场上只有 \(N\le300\) \(Q \omega Q\)

首先我们要知道,对任意一条直径算偏心距都是一样的。

证明

首先任意两条直径都必定会相交,否则把这两条直径相连就会得到更长的路径来充当直径。

其次相交的直径在不相交的部分,长度分别相等,不然就不能保证两者都是等长的直径。

然后我们肯定要知道,一条偏心距一定是一个点到直径端点的距离,不然保证不了最长。

如果偏心距包含了一些直径的交,那么这些偏心距一定都是等长的,可以根据上面的推论证明;如果不包含,就一定不会比包含的优,所以只要跨过公共部分就可以了,也就是说任意一条都可以。

所以先 \(O(n^3)\) \(\text{Floyd}\) 求出树的一条直径。

然后 \(O(n^2)\) 暴力枚举一条直径上的长度不超过 \(s\) 的路径,在枚举一个点 \(k\) 计算当前的偏心距,最后把所有偏心距取 \(\min\) 。

然后提一下两个事情:

\(d[i][x]+d[x][j]=d[i][j]\) 说明 \(x\) 在路径 \((i, j)\) 上;

\((d[i][x] + d[j][x] - d[i][j])/2\) 表示 \(x\) 和 \((i, j)\) 的距离。

证明很简单,画个图就好了。

细节注意事项

  • 咕咕咕

参考代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= c == '-', c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
} const int _ = 302; int n, s, d[_][_]; int main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
read(n), read(s);
memset(d, 0x3f, sizeof d);
for (rg int i = 1; i <= n; ++i) d[i][i] = 0;
for (rg int u, v, x, i = 1; i < n; ++i)
read(u), read(v), read(x), d[u][v] = d[v][u] = min(d[u][v], x);
for (rg int k = 1; k <= n; ++k)
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= n; ++j)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
int tp = 0, bt = 0, D = 0;
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= n; ++j)
if (D < d[i][j])
D = d[i][j], tp = i, bt = j;
int ans = 2147483647;
for (rg int i = 1; i <= n; ++i) {
if (d[tp][i] + d[i][bt] != D) continue;
for (rg int j = 1; j <= n; ++j) {
if (d[tp][j] + d[j][bt] != D) continue;
if (d[i][j] > s) continue;
int ecc = -1;
for (rg int k = 1; k <= n; ++k)
ecc = max(ecc, (d[i][k] + d[j][k] - d[i][j]) >> 1);
ans = min(ans, ecc);
}
}
printf("%d\n", ans);
return 0;
}

完结撒花 \(qwq\)

「NOIP2007」树网的核的更多相关文章

  1. [BZOJ1999][codevs1167][Noip2007]Core树网的核

    [BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(t ...

  2. BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP

    BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP Description 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T ...

  3. 【bzoj1999】[Noip2007]Core树网的核 树的直径+双指针法+单调队列

    题目描述 给出一棵树,定义一个点到一条路径的距离为这个点到这条路径上所有点的距离的最小值.求一条长度不超过s的路径,使得所有点到这条路径的距离的最大值最小. 输入 包含n行: 第1行,两个正整数n和s ...

  4. [bzoj1999][noip2007]Core树网的核

    好久没写题解了.这题不算太水就写一下题解. 话说回来,虽然不水但是挺裸.可以说题意即一半题解了. 我猜粘了题面也没有人去看的,所以直接人话题意了. 给一棵树,点数1e6,(当年noip的n当然是只有3 ...

  5. 【noip2007】树网的核

    题解: 首先我们要知道一个性质:如果有多条直径 这个核不论在哪条直径上 答案都是一样的 这样我们就可以随便找一条直径 在这条直径上枚举核的位置 并且dfs预处理maxlon[i] (i在直径上) 表示 ...

  6. 【BZOJ1999】【NOIP2007】树网的核 单调队列优化DP

    题目描述 题目很长,大家自己去看吧. bzoj vijos 原题\(n\leq 300\) 加强版\(n\leq 500000\) 题解 这种东西当然要猜结论的啦,否则会比较麻烦. 结论1:如果有很多 ...

  7. 洛谷 1099 ( bzoj 1999 ) [Noip2007]Core树网的核

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1999 <算法竞赛进阶指南>346页.https://www.cnblogs.co ...

  8. [Noip2007]Core树网的核

    嘟嘟嘟 首先求树的直径两次bfs即可,实际上bfs就是最短路,因为树上路径是唯一的,所以用任何一种遍历方法都行(spfa和dijkstra当然也可以). 可以证明,只要求出任意一条直径就行了,为什么呢 ...

  9. bzoj 1999: [Noip2007]Core树网的核【树的直径+单调队列】

    我要懒死了,所以依然是lyd的课件截图 注意是min{max(max(d[uk]),dis(u1,ui),dis(uj,un))},每次都从这三个的max里取min #include<iostr ...

随机推荐

  1. pytest-conftest.py作用范围

    1.conftest.py解释 conftest.py是pytest框架里面一个很重要的东西,它可以在这个文件里面编写fixture,而这个fixture的作用就相当于我们unittest框架里面的s ...

  2. 14. 深入解析Pod对象(一)

    14. 深入解析Pod对象(一) """ 通过前面的讲解,大家应该都知道: Pod,而不是容器,它是 Kubernetes 项目中的最小编排单位.将这个设计落实到 API ...

  3. Build ear package

    build 单个service ear TestService -> TestService 修改file Location地址(放在你指定的位置) 点击Build Archive succes ...

  4. Codeforces Round #616 (Div. 2) D

    莫队的模板 struct node{ int l,r,id; }q[maxn]; int cmp(node a,node b) { ) ? a.r < b.r : a.r > b.r); ...

  5. 解决sublime不能安装packages的问题

    问题如下:该问题产生的原因是因为默认的配置中无法访问 "https://packagecontrol.io/channel_v3.json"该文件造成的 解决: 1.下载 chan ...

  6. 《程序之美系列(套装共6册)》[美]斯宾耐立思 等 (作者) epub+mobi+azw3

    <架构之美>内容包括:facebook的架构如何建立在以数据为中心的应用生态系统之上.xen的创新架构对操作系统未来的影响.kde项目的社群过程如何让软件的架构从粗略的草图成为漂亮的系统. ...

  7. Python 基础之正则之二 匹配分组,正则相关函数及表达式修饰符

    四.匹配分组   [元字符] 分组符号 a|b   匹配字符a 或 字符b  (如果两个当中有重合部分,把更长的那个放前面) (ab)   匹配括号内的表达式 ,将()作为一个分组 num  引用分组 ...

  8. 设计模式01 创建型模式 - 原型模式(Protype Pattern)

    参考 1. 设计模式:原型模式 | 博客园 2. Java clone深拷贝.浅拷贝 | CSDN 3. Cloneable接口和Object的clone()方法 | 博客园 原型模式(Prototy ...

  9. Python 使用pillow 操作图像

    文档:https://pillow.readthedocs.io/en/stable/index.html 计算机图像基础 颜色和RGBA值 计算机程序通常将图像中的颜色表示为 RGBA 值.RGBA ...

  10. 二十二 XML校验器

    Struts2提供的校验器及其规则: