Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15040   Accepted: 7737

Description

Bulls are so much better at math than the cows. They can multiply huge integers together and get perfectly precise answers ... or so they say. Farmer John wonders if their answers are correct. Help him check the bulls' answers.
Read in two positive integers (no more than 40 digits each) and compute their product. Output it as a normal number (with no extra leading zeros).

FJ asks that you do this yourself; don't use a special library function for the multiplication.

Input

* Lines 1..2: Each line contains a single decimal number.

Output

* Line 1: The exact product of the two input lines

Sample Input

11111111111111
1111111111

Sample Output

12345679011110987654321

Source

USACO 2004 November


问题链接:POJ2389 Bull Math

问题简述:输入两个正整数,它们不超过40位,计算它们的乘积。

问题分析:这是一个大整数计算问题,可以用一个大整数类来实现。

程序说明:编译的时候需要使用G++编译器。求整数绝对值的函数abs()需要用C语言库stdlib.h中的函数,否则会出问题。该问题只用到了乘法运算,为了代码的简洁,可以将不需要的代码删除。这里使用了一个完整的大整数运算类,也可以用于其他地方。

参考链接:B00008 C++实现的大整数计算(一)

AC的C++语言程序如下:

/* POJ2389 Bull Math */

#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib> #define MAX 100 // for strings using namespace std; class BigInteger {
private:
string number;
bool sign;
public:
BigInteger(); // empty constructor initializes zero
BigInteger(string s); // "string" constructor
BigInteger(string s, bool sin); // "string" constructor
BigInteger(int n); // "int" constructor
void setNumber(string s);
const string& getNumber(); // retrieves the number
void setSign(bool s);
const bool& getSign();
BigInteger absolute(); // returns the absolute value
void operator = (BigInteger b);
bool operator == (BigInteger b);
bool operator != (BigInteger b);
bool operator > (BigInteger b);
bool operator < (BigInteger b);
bool operator >= (BigInteger b);
bool operator <= (BigInteger b);
BigInteger& operator ++(); // prefix
BigInteger operator ++(int); // postfix
BigInteger& operator --(); // prefix
BigInteger operator --(int); // postfix
BigInteger operator + (BigInteger b);
BigInteger operator - (BigInteger b);
BigInteger operator * (BigInteger b);
BigInteger operator / (BigInteger b);
BigInteger operator % (BigInteger b);
BigInteger& operator += (BigInteger b);
BigInteger& operator -= (BigInteger b);
BigInteger& operator *= (BigInteger b);
BigInteger& operator /= (BigInteger b);
BigInteger& operator %= (BigInteger b);
BigInteger& operator [] (int n);
BigInteger operator -(); // unary minus sign
operator string(); // for conversion from BigInteger to string
private:
bool equals(BigInteger n1, BigInteger n2);
bool less(BigInteger n1, BigInteger n2);
bool greater(BigInteger n1, BigInteger n2);
string add(string number1, string number2);
string subtract(string number1, string number2);
string multiply(string n1, string n2);
pair<string, long long> divide(string n, long long den);
string toString(long long n);
long long toInt(string s);
}; //------------------------------------------------------------------------------ BigInteger::BigInteger() { // empty constructor initializes zero
number = "0";
sign = false;
} BigInteger::BigInteger(string s) { // "string" constructor
if( isdigit(s[0]) ) { // if not signed
setNumber(s);
sign = false; // +ve
} else {
setNumber( s.substr(1) );
sign = (s[0] == '-');
}
} BigInteger::BigInteger(string s, bool sin) { // "string" constructor
setNumber( s );
setSign( sin );
} BigInteger::BigInteger(int n) { // "int" constructor
stringstream ss;
string s;
ss << n;
ss >> s; if( isdigit(s[0]) ) { // if not signed
setNumber( s );
setSign( false ); // +ve
} else {
setNumber( s.substr(1) );
setSign( s[0] == '-' );
}
} void BigInteger::setNumber(string s) {
number = s;
} const string& BigInteger::getNumber() { // retrieves the number
return number;
} void BigInteger::setSign(bool s) {
sign = s;
} const bool& BigInteger::getSign() {
return sign;
} BigInteger BigInteger::absolute() {
return BigInteger( getNumber() ); // +ve by default
} void BigInteger::operator = (BigInteger b) {
setNumber( b.getNumber() );
setSign( b.getSign() );
} bool BigInteger::operator == (BigInteger b) {
return equals((*this) , b);
} bool BigInteger::operator != (BigInteger b) {
return ! equals((*this) , b);
} bool BigInteger::operator > (BigInteger b) {
return greater((*this) , b);
} bool BigInteger::operator < (BigInteger b) {
return less((*this) , b);
} bool BigInteger::operator >= (BigInteger b) {
return equals((*this) , b)
|| greater((*this), b);
} bool BigInteger::operator <= (BigInteger b) {
return equals((*this) , b)
|| less((*this) , b);
} BigInteger& BigInteger::operator ++() { // prefix
(*this) = (*this) + 1;
return (*this);
} BigInteger BigInteger::operator ++(int) { // postfix
BigInteger before = (*this); (*this) = (*this) + 1; return before;
} BigInteger& BigInteger::operator --() { // prefix
(*this) = (*this) - 1;
return (*this); } BigInteger BigInteger::operator --(int) { // postfix
BigInteger before = (*this); (*this) = (*this) - 1; return before;
} BigInteger BigInteger::operator + (BigInteger b) {
BigInteger addition;
if( getSign() == b.getSign() ) { // both +ve or -ve
addition.setNumber( add(getNumber(), b.getNumber() ) );
addition.setSign( getSign() );
} else { // sign different
if( absolute() > b.absolute() ) {
addition.setNumber( subtract(getNumber(), b.getNumber() ) );
addition.setSign( getSign() );
} else {
addition.setNumber( subtract(b.getNumber(), getNumber() ) );
addition.setSign( b.getSign() );
}
}
if(addition.getNumber() == "0") // avoid (-0) problem
addition.setSign(false); return addition;
} BigInteger BigInteger::operator - (BigInteger b) {
b.setSign( ! b.getSign() ); // x - y = x + (-y)
return (*this) + b;
} BigInteger BigInteger::operator * (BigInteger b) {
BigInteger mul; mul.setNumber( multiply(getNumber(), b.getNumber() ) );
mul.setSign( getSign() != b.getSign() ); if(mul.getNumber() == "0") // avoid (-0) problem
mul.setSign(false); return mul;
} // Warning: Denomerator must be within "long long" size not "BigInteger"
BigInteger BigInteger::operator / (BigInteger b) {
long long den = toInt( b.getNumber() );
BigInteger div; div.setNumber( divide(getNumber(), den).first );
div.setSign( getSign() != b.getSign() ); if(div.getNumber() == "0") // avoid (-0) problem
div.setSign(false); return div;
} // Warning: Denomerator must be within "long long" size not "BigInteger"
BigInteger BigInteger::operator % (BigInteger b) {
long long den = toInt( b.getNumber() ); BigInteger rem;
long long rem_int = divide(number, den).second;
rem.setNumber( toString(rem_int) );
rem.setSign( getSign() != b.getSign() ); if(rem.getNumber() == "0") // avoid (-0) problem
rem.setSign(false); return rem;
} BigInteger& BigInteger::operator += (BigInteger b) {
(*this) = (*this) + b;
return (*this);
} BigInteger& BigInteger::operator -= (BigInteger b) {
(*this) = (*this) - b;
return (*this);
} BigInteger& BigInteger::operator *= (BigInteger b) {
(*this) = (*this) * b;
return (*this);
} BigInteger& BigInteger::operator /= (BigInteger b) {
(*this) = (*this) / b;
return (*this);
} BigInteger& BigInteger::operator %= (BigInteger b) {
(*this) = (*this) % b;
return (*this);
} BigInteger& BigInteger::operator [] (int n) {
return *(this + (n*sizeof(BigInteger)));
} BigInteger BigInteger::operator -() { // unary minus sign
return (*this) * -1;
} BigInteger::operator string() { // for conversion from BigInteger to string
string signedString = ( getSign() ) ? "-" : ""; // if +ve, don't print + sign
signedString += number;
return signedString;
} bool BigInteger::equals(BigInteger n1, BigInteger n2) {
return n1.getNumber() == n2.getNumber()
&& n1.getSign() == n2.getSign();
} bool BigInteger::less(BigInteger n1, BigInteger n2) {
bool sign1 = n1.getSign();
bool sign2 = n2.getSign(); if(sign1 && ! sign2) // if n1 is -ve and n2 is +ve
return true; else if(! sign1 && sign2)
return false; else if(! sign1) { // both +ve
if(n1.getNumber().length() < n2.getNumber().length() )
return true;
if(n1.getNumber().length() > n2.getNumber().length() )
return false;
return n1.getNumber() < n2.getNumber();
} else { // both -ve
if(n1.getNumber().length() > n2.getNumber().length())
return true;
if(n1.getNumber().length() < n2.getNumber().length())
return false;
return n1.getNumber().compare( n2.getNumber() ) > 0; // greater with -ve sign is LESS
}
} bool BigInteger::greater(BigInteger n1, BigInteger n2) {
return ! equals(n1, n2) && ! less(n1, n2);
} string BigInteger::add(string number1, string number2) {
string add = (number1.length() > number2.length()) ? number1 : number2;
char carry = '0';
int differenceInLength = abs( (int) (number1.size() - number2.size()) ); if(number1.size() > number2.size())
number2.insert(0, differenceInLength, '0'); // put zeros from left else// if(number1.size() < number2.size())
number1.insert(0, differenceInLength, '0'); for(int i=number1.size()-1; i>=0; --i) {
add[i] = ((carry-'0')+(number1[i]-'0')+(number2[i]-'0')) + '0'; if(i != 0) {
if(add[i] > '9') {
add[i] -= 10;
carry = '1';
} else
carry = '0';
}
}
if(add[0] > '9') {
add[0]-= 10;
add.insert(0,1,'1');
}
return add;
} string BigInteger::subtract(string number1, string number2) {
string sub = (number1.length()>number2.length())? number1 : number2;
int differenceInLength = abs( (int)(number1.size() - number2.size()) ); if(number1.size() > number2.size())
number2.insert(0, differenceInLength, '0'); else
number1.insert(0, differenceInLength, '0'); for(int i=number1.length()-1; i>=0; --i) {
if(number1[i] < number2[i]) {
number1[i] += 10;
number1[i-1]--;
}
sub[i] = ((number1[i]-'0')-(number2[i]-'0')) + '0';
} while(sub[0]=='0' && sub.length()!=1) // erase leading zeros
sub.erase(0,1); return sub;
} string BigInteger::multiply(string n1, string n2) {
if(n1.length() > n2.length())
n1.swap(n2); string res = "0";
for(int i=n1.length()-1; i>=0; --i) {
string temp = n2;
int currentDigit = n1[i]-'0';
int carry = 0; for(int j=temp.length()-1; j>=0; --j) {
temp[j] = ((temp[j]-'0') * currentDigit) + carry; if(temp[j] > 9) {
carry = (temp[j]/10);
temp[j] -= (carry*10);
} else
carry = 0; temp[j] += '0'; // back to string mood
} if(carry > 0)
temp.insert(0, 1, (carry+'0')); temp.append((n1.length()-i-1), '0'); // as like mult by 10, 100, 1000, 10000 and so on res = add(res, temp); // O(n)
} while(res[0] == '0' && res.length()!=1) // erase leading zeros
res.erase(0,1); return res;
} pair<string, long long> BigInteger::divide(string n, long long den) {
long long rem = 0;
string result;
result.resize(MAX); for(int indx=0, len = n.length(); indx<len; ++indx) {
rem = (rem * 10) + (n[indx] - '0');
result[indx] = rem / den + '0';
rem %= den;
}
result.resize( n.length() ); while( result[0] == '0' && result.length() != 1)
result.erase(0,1); if(result.length() == 0)
result = "0"; return make_pair(result, rem);
} string BigInteger::toString(long long n) {
stringstream ss;
string temp; ss << n;
ss >> temp; return temp;
} long long BigInteger::toInt(string s) {
long long sum = 0; for(int i=0; i<(int)s.length(); i++)
sum = (sum*10) + (s[i] - '0'); return sum;
} int main()
{
string a, b;
BigInteger bia, bib, bic; while(cin >> a >> b) {
bia.setNumber(a);
bib.setNumber(b); bic = bia * bib; cout << bic.getNumber() << endl;
} return 0;
}

转载于:https://www.cnblogs.com/tigerisland/p/7564133.html

POJ2389 Bull Math【大数】的更多相关文章

  1. POJ2389 Bull Math

    /* POJ2389 Bull Math http://poj.org/problem?id=2389 高精度乘法 * */ #include <cstring> #include < ...

  2. [PKU2389]Bull Math (大数运算)

    Description Bulls are so much better at math than the cows. They can multiply huge integers together ...

  3. Poj OpenJudge 百练 2389 Bull Math

    1.Link: http://poj.org/problem?id=2389 http://bailian.openjudge.cn/practice/2389/ 2.Content: Bull Ma ...

  4. BZOJ1754: [Usaco2005 qua]Bull Math

    1754: [Usaco2005 qua]Bull Math Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 374  Solved: 227[Submit ...

  5. 1754: [Usaco2005 qua]Bull Math

    1754: [Usaco2005 qua]Bull Math Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 398  Solved: 242[Submit ...

  6. POJ 2389 Bull Math(水~Java -大数相乘)

    题目链接:http://poj.org/problem?id=2389 题目大意: 大数相乘. 解题思路: java BigInteger类解决 o.0 AC Code: import java.ma ...

  7. BZOJ 1754: [Usaco2005 qua]Bull Math

    Description Bulls are so much better at math than the cows. They can multiply huge integers together ...

  8. poj 2389.Bull Math 解题报告

    题目链接:http://poj.org/problem?id=2389 题目意思:就是大整数乘法. 题目中说每个整数不超过 40 位,是错的!!!要开大点,这里我开到100. 其实大整数乘法还是第一次 ...

  9. 【BZOJ】1754: [Usaco2005 qua]Bull Math

    [算法]高精度乘法 #include<cstdio> #include<algorithm> #include<cstring> using namespace s ...

随机推荐

  1. STM32F103ZET6系统定时器SysTick

    1.系统定时器SysTick的简介 系统定时器SysTick属于内核外设,内嵌在NVIC中.SysTick是一个24位的向下递减的计数器,计数器根据SysTick的时钟源计数,当SysTick的计数器 ...

  2. 1024 Palindromic Number (25 分)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Nu ...

  3. Prthon多线程和模块

    Prthon多线程和模块 案例1:简化除法判断 案例2:分析apache访问日志 案例3:扫描存活主机 案例4:利用多线程实现ssh并发访问 1 案例1:简化除法判断 1.1 问题 编写mydiv.p ...

  4. Github基础使用教程 ———功能介绍

    Github基础使用手把手教程    --功能介绍 本人Github小白,刚摸索的差不多,记录一下经验,小白写出来的东西各位萌新一定看的懂啦~ 本篇内容主要针对想快速学会使用Github这个强大工具的 ...

  5. web自动化浏览器chrome和驱动chromedriver

    1.web自动化下载浏览器和对应的浏览器驱动,以谷歌浏览器为例 电脑上安装谷歌浏览器,查看谷歌浏览器的版本,输入chrome://settings/help 2.chromedriver国内镜像地址h ...

  6. 【php】COOKIE和SESSION

    一. COOKIE(小甜点,小饼干) a) 生活中的实例: i. 大保健的会员卡(记录你的姓名.性别.ID号码.手机号……) ii. 超市的会员卡(记录你的姓名,性别,会员积分) b) PHP当中的实 ...

  7. 【php】面向对象(四)

    知识点:ai一. a => abstract(抽象类) a) 抽象类的修饰符,修饰类和成员方法 b) 注意:被修饰的类不能被实例化,被修饰的方法不能有程序体 c) 如果某一个类使用abstrac ...

  8. Eclipse(Eclipse for android)代码自动提示设置

    java代码和xml资源代码在有的eclipse中可以自己提示,但有的并不支持这个功能,还得我们人为去调整,主要原因是因为你们下载的elipse的渠道不同,获得的版本有的官方原版,有的是个人备份版等等 ...

  9. android所有颜色

    <?xml version="1.0" encoding="utf-8" ?> <resources> <color name=& ...

  10. Struts2-学习笔记系列(10)-自定义类型转换

    注意name=user和对应action中的实例名称一致 这些代码是写在HTML文件中的 <s:form action="login"> <s:textfield ...