RANet : 分辨率自适应网络,效果和性能的best trade-off | CVPR 2020
基于对自适应网络的研究,论文提出了自适应网络RANet(Resolution Adaptive Network)来进行效果与性能上的取舍,该网络包含多个不同输入分辨率和深度的子网,难易样本的推理会自动使用不同的计算量,并且子网间的特征会进行融合,从实验结果来看,在性能和速度上取得了很不错的trade-off
来源:晓飞的算法工程笔记 公众号
论文: Resolution Adaptive Networks for Efficient Inference
Introduction
深度CNN带来了性能提升的同时也带来了过高的计算量,许多研究放在了如何进行网络加速上面,其中比较直接的是根据样本难易程度进行自动调整的自适应网络。基于对自适应网络的研究,论文提出了自适应网络RANet(Resolution Adaptive Network),思想如图1所示,网络包含多个不同输入分辨率和深度子网,样本先从最小的子网开始识别,若结果满足条件则退出,否则继续使用更大的子网进行识别,子网的特征不是独有的,下一级别的子网会融合上一级别的子网特征,从实验来看,论文在效果和性能上取得了很不错的trade-off。
Method
Adaptive Inference Setting
构建包含K个分类器的自适应模型,对于输入图片$x$,第$k$个分类器的输出如公式1,$\theta_k$为分类器对应的子网参数,部分参数是分类器间共享的,$p_c^k\in [0, 1]$为$c$类别置信度。
自适应网络根据图片的复杂程度动态选择合适的计算分支,即若当前分类器的输出达到预期,则退出,论文采用softmax输出的置信度来进行判断,如公式2和公式3所示
Overall Architecture
RANet的整体结构如图2所示,包含初始层(Initial Layer)和$H$个对应不同分辨率的子网,每个子网包含多个分类器。具体流程先使用初始层获得不同分辨率的特征图,然后使用最低分辨率的子网进行预测,如果子网没有获得可靠的结果,则使用下一个分辨率稍大的子网进行预测,重复直到获得可靠的结果或者到达最大分辨率子网。
在重复迭代预测的过程中,高分辨率层会融合低分辨率层的特征。尽管RANet已经在初始层对图片进行了从细粒度到粗粒度的处理,子网仍然会继续对其进行下采样,直到特征图大小为$s=1$ scale(表示初始层产生的最小分辨率),分类器只加在最后几个特征图大小$s=1$ scale的block上。
Network Details
Initial Layer
初始层用于生成$H$个基础特征,特征有$S$个尺寸,图2的初始层包含3个不同尺寸的特征,第一个特征通过Regular-Conv层产生,后面的特征通过Strided-Conv层产生
Sub-networks with Different Scales
Sub-network 1处理分辨率最低的特征图$x_0^{1,1}$,使用图3(a)的$l$层regular Dense Blocks,每层的输出$x_i^{1,1}$都将传递到Sub-network 2中
输入大小为$s$ scale的Sub-network $h$($h>1$)处理基础特征$x^{s,h}$,并且使用图3(b,c)的Fusion Blocks来融合自Sub-network ($h-1$)的特征,包含两种类型,一种为图3b的保持特征图大小的类型,另一种为图3c的降低特征图大小类型。对于低维特征的上采样视当前特征的大小使用Up-Conv(Regular-Conv+Bilinear interpolation)或Regular-Conv,对于前后特征也会进行连接,具体结构细节见图3。
对于输入为$s$ scale的Sub-network $h$的建立如下:假设$h$子网包含$b_h$ blocks,block 1至 block $b_{h-1}(b_{h-1} < b_{h})$为Fusion Blocks,特征会下采样$s$次,保证输出的特征图为$s=1$ scale进行分类,剩余的block为regular Dense Blocks。
Transition layer
RANet也使用了DeseNet稠密的transition layer,具体为$1\times 1$卷积+BN+ReLU,为了简单没有在图2体现
Classifiers and loss function
分类器加在每个子网的后几个block中,在训练阶段,样本会按顺序传给所有的子网,最终的损失是每个分类器计算交叉熵损失加权累积,具体逻辑和权重跟MSDNet一样
Resolution and Depth Adaptation
RANet的整体结构和MSDNet十分类似,论文与其进行了对比,MSDNet的分类器放到分辨率最低的路径中,如果中间的分类器没有得到符合预期的结果,则会进行下一步全部尺寸的推理预测。而RANet则是从低尺寸到高尺寸逐步使用不同的子网进行推理预测,这样的方式能更好地自适应结合深度和分辨率。
Experiments
Anytime Prediction
限制单图的计算量FLOPs,直接记录自适应网络中所有分类器的性能以及其计算量进行对比
Budgeted Batch Classification
限制一批图片的资源总量,需要根据资源总量设定阈值来控制推理的提前退出,记录自适应网络的性能以及对应的资源限制
Visualization and Discussion
图7展示了RANet识别的一些样例,easy为前阶段的分类器能识别成的样本,hard为前阶段识别失败,但后阶段能识别成功的样本,主要的挑战为多目标、小目标和类间特征不明显的物体
Conclusion
基于对自适应网络的研究,论文提出了自适应网络RANet(Resolution Adaptive Network)来进行效果与性能上的取舍,该网络包含多个不同输入分辨率和深度的子网,难易样本的推理会自动使用不同的计算量,并且子网间的特征会进行融合,从实验结果来看,在性能和速度上取得了很不错的trade-off
参考内容
- MSD: Multi-Self-Distillation Learning via Multi-classifiers within Deep Neural Networks - https://arxiv.org/abs/1911.09418
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】
RANet : 分辨率自适应网络,效果和性能的best trade-off | CVPR 2020的更多相关文章
- 一步步实现 easyui datagrid表格宽度自适应,效果非常好
一步步实现 easyui datagrid表格宽度自适应,效果非常好: 一.设置公共方法,使得datagrid的属性 fitColumns:true $(function(){ //初始加载,表格宽 ...
- 无感知的用同步的代码编写方式达到异步IO的效果和性能,避免了传统异步回调所带来的离散的代码逻辑和陷入多层回调中导致代码无法维护
golang/goroutine 和 swoole/coroutine 协程性能测试对比 - Go语言中文网 - Golang中文社区 https://studygolang.com/articles ...
- 【读书笔记】iOS网络-优化请求性能
一,度量网络性能 1,网络带宽 用于描述无线网络性能的最常见度量指标就是带宽.在数字无线通信中,网络带宽可以描述为两个端点之间的通信通道每秒钟可以传输的位数.现代无线网络所能提供的理论带宽是很高的.不 ...
- android 分辨率自适应
1.术语和概念 术语 说明 备注 Screen size(屏幕尺寸) 指的是手机实际的物理尺寸,比如常用的2.8英寸,3.2英寸,3.5英寸,3.7英寸 摩托罗拉milestone手机是3.7英寸 A ...
- Android程序对不同手机屏幕分辨率自适应的方法
相信各位Android开发爱好者都知道,由于OEM之间的竞争,各种Android操作系统的手机简直就是琳琅满目,屏幕分辨率的差异可想而知.目前比较主流的有WVGA=800x480,HVGA=480x3 ...
- Linux查看网络和IO性能问题
Linux上使用iftop可以查看网络使用情况,使用iotop可以查看磁盘io使用情况 首先需要安装iftop和iotop: yum install iftop yum install iotop = ...
- 12.1.0.2自适应特性导致SQL性能下降
背景介绍 在升级到12.1.0.2.0数据库版本后,在使用12c中引入的自适应特性默认配置的情况下,可能引起SQL性能的下降. 问题现象升级到12.1.0.2.0后,SQL语句性能可能出现下降. 影响 ...
- 利用CSS3中的clac()实现按照屏幕分辨率自适应宽度
1.简介 calc()看其外表像个函数.平时在制作页面的时候,总会碰到有的元素是100%的宽度(例如body元素).如果元素宽度为100%时,其自身不带其他盒模型属性设置还好,要是有别的,那将导致盒子 ...
- Puppeteer最大化显示,分辨率自适应
Puppeteer自适应分辨率,可以将defaultViewport设为null, 启动的时候还是半屏显示,点击最大化按钮,可以最大化显示. 这样分辨率能够自适应操作系统. 具体可看:https:// ...
随机推荐
- centos替换源
!/bin/sh 本文原内容来自:https://github.com/judasn/Linux-Tutorial/blob/master/CentOS-Extra-Packages.md 可能额外需 ...
- ajax前端传递对象给后端
前端操作如下即可:
- PTA数据结构与算法题目集(中文) 7-27
PTA数据结构与算法题目集(中文) 7-27 7-27 家谱处理 (30 分) 人类学研究对于家族很感兴趣,于是研究人员搜集了一些家族的家谱进行研究.实验中,使用计算机处理家谱.为了实现这个目的 ...
- pinpoint配置使用
一.下载pinpoint包 从https://github.com/naver/pinpoint/releases 下载 pinpoint-agent.tar.gz pinpoint-collecto ...
- VUE_shop(第十天)项目的打包优化
项目的打包优化 1.添加页面的加载效果 1.首先安装运行依赖nprocess,在main.js文件中的axios拦截器拦截请求的时候调用Npeocees.start. 在拦截响应的时候调用nproce ...
- thymeleaf的特殊属性赋值
在用thymeleaf时,遇到特殊属性不知道该怎么解决如下: 问题1:循环时,遇到特殊的属性,不知道怎么赋值 如:cate-id="" ,fid=""; 使用t ...
- Linux中使用netstat命令的基本操作,排查端口号的占用情况
Linux中netstat命令详解 Netstat是控制台命令,是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表.实际的网络连接以及每一个网络接口设备的状态信息.Netstat用于显示与I ...
- mysql 单机多实例配置
如果你想在一台机器上进行主从配置实验,本篇可以帮助你实现愿望 [client] #password = your_password port = 3306 socket = /tmp/mysql.so ...
- JS数据结构与算法 - 剑指offer二叉树算法题汇总
❗❗ 必看经验 在博主刷题期间,基本上是碰到一道二叉树就不会碰到一道就不会,有时候一个下午都在搞一道题,看别人解题思路就算能看懂,自己写就呵呵了.一气之下不刷了,改而先去把二叉树的基础算法给搞搞懂,然 ...
- 跨平台开源密码管理器 KeePassXC
简介 KeePassXC 是一个开源的跨平台密码管理器.基于 KeePass 二次开发. KeePassXC 可以安全地在本地存储您的密码,配合浏览器插件KeePassXC-Browser可辅助登录. ...