UVALive 4287 SCC-Tarjan 加边变成强连通分量
还是强连通分量的题目,但是这个题目不同的在于,问你最少要添加多少条有向边,使得整个图变成一个强连通分量
然后结论是,找到那些入度为0的点的数目 和 出度为0的点的数目,取其最大值即可,怎么证明嘛。。。我也不好怎么证,不过细细一琢磨发现就是这样,改天找聪哥一起探讨下怎么证明
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>
using namespace std;
const int N=20010;
int pre[N],lowlink[N],sccno[N];
vector<int>G[N],G2[N];
stack<int> sta;
int n,m,vis[N],scc_cnt,dfs_clk;
int ind[N],outd[N];
void init()
{
for (int i=0;i<=n;i++){
pre[i]=0;
lowlink[i]=0;
sccno[i]=0;
G[i].clear();
G2[i].clear();
vis[i]=0;
scc_cnt=dfs_clk=0;
ind[i]=outd[i]=0;
}
}
void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_clk;
sta.push(u);
for (int i=0;i<G[u].size();i++){
int v=G[u][i];
if (!pre[v]){
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if (!sccno[v]){
lowlink[u]=min(lowlink[u],pre[v]);
}
}
if (lowlink[u]==pre[u]){
scc_cnt++;
for (;;){
int x=sta.top();sta.pop();
sccno[x]=scc_cnt;
if (x==u) break;
}
}
}
void tarjan()
{
for (int i=1;i<=n;i++){
if (!pre[i]) dfs(i);
}
for (int i=1;i<=n;i++){
int u=sccno[i];
for (int j=0;j<G[i].size();j++){
int v=G[i][j];
v=sccno[v];
if (u!=v){
G2[u].push_back(v);
ind[v]++;
outd[u]++;
}
}
}
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
init();
int a,b;
while (m--){
scanf("%d%d",&a,&b);
G[a].push_back(b);
}
tarjan();
if (scc_cnt==1){
puts("0");
continue;
}
int ans1=0,ans2=0;
for (int i=1;i<=scc_cnt;i++){
if (ind[i]==0) ans1++;
if (outd[i]==0) ans2++;
}
printf("%d\n",max(ans1,ans2));
}
return 0;
}
UVALive 4287 SCC-Tarjan 加边变成强连通分量的更多相关文章
- Tarjan算法求有向图强连通分量并缩点
// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...
- Tarjan算法求出强连通分量(包含若干个节点)
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- UVA1327 && POJ1904 King's Quest(tarjan+巧妙建图+强连通分量+缩点)
UVA1327 King's Quest POJ1904 King's Quest 题意: 有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚.现有一个匹配表,将每个王子都与一个自己 ...
- Tarjan+缩点【强连通分量】【模板】
#include<iostream> #include<cstring> #include<algorithm> #include<queue> #in ...
- 【模板】Tarjan缩点,强连通分量 洛谷P2341 [HAOI2006]受欢迎的牛 [2017年6月计划 强连通分量01]
P2341 [HAOI2006]受欢迎的牛 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的 ...
- 【BZOJ1051】1051: [HAOI2006]受欢迎的牛 tarjan求强连通分量+缩点
Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认 ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
随机推荐
- cookie、sessionStorage和localStorage的区别
cookie.sessionStorage.localStorage 都是用于本地存储的技术:其中 cookie 出现最早,但是存储容量较小,仅有4KB:sessionStorage.localSto ...
- Python学习笔记之基础篇(四)列表与元祖
#### 列表 li = ['alex','wusir','egon','女神','taibai'] ###增加的3种方法 ''' # append li.append('日天') li.append ...
- Laradock 如何通过 ssh 方式连接到 workspace
用 docker-compose exec workspace bash 方式可以进入容器,但是还是在 xshell 终端连接比较方便. 在网上也没找到方法,其实可以通过密钥的方式连接.记录一下仅 ...
- JS动态获取 Url 参数
此操作主要用于动态 ajax 请求 1.首先封装一个函数 GetRequest(),能动态获取到 url 问号"?"后的所有参数 , function GetRequest() { ...
- 面试题23从上到下打印二叉树+queue操作
//本题思路就是层次遍历二叉树,使用一个队列来模拟过程 /* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *ri ...
- IdentityServer4专题之六:Resource Owner Password Credentials
实现代码: (1)IdentityServer4授权服务器代码: public static class Config { public static IEnumerable<Identity ...
- 1-4SpringBoot操作之Spring-Data-Jpa(一)
Spring-Data-Jpa JPA(Java Persistence API)定义了一系列对象持久化的标准, 目前实现这一规范的产品有Hibernate.TopLink等. Spring Data ...
- SciPy 图像处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- arm linux 移植 ffmpeg 库 + x264
背景 Ffmpeg 中带有h264的解码,没有编码,需要添加x264.libx264是一个自由的H.264编码库,是x264项目的一部分,使用广泛,ffmpeg的H.264实现就是用的libx264. ...
- selenium 启动、窗口、获取标题
1. from selenium import webdriver #启动chrom浏览器,没写executable_path,这是因为配置环境时,已经将chromdriver放到python安装文件 ...