Description

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个 常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1
Solution
又是一道斜率优化基础入门题,先写暴力DP:
dp[i]=min(dp[j]+(sum[i]−sum[j]+i−j−1−L)2),然后进行斜率优化即可。
Code
#include<stdio.h>
#include<algorithm>
#define inf 1e18
using namespace std;
int n,l,sum[],a[];
int que[],h,t;
long long f[],q[],p[];
long long q1(long long x){return f[x]+q[x]*q[x];}
double count(int x,int y){return (q1(x)-q1(y))*1.0/(2.0*(q[x]-q[y]));}
int main()
{
scanf("%d%d",&n,&l);
for(int i=;i<=n;++i)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
sum[i]=a[i]+sum[i-];
for(int i=;i<=n;++i)
f[i]=inf;
for(int i=;i<=n;++i)
q[i]=sum[i]+i;
for(int i=;i<=n;++i)
p[i]=sum[i]+i-l-;
for(int i=;i<=n;++i)
{
while(h<t&&count(que[h],que[h+])<=p[i]*1.0)h++;
f[i]=f[que[h]]+(p[i]-q[que[h]])*(p[i]-q[que[h]]);
while(h<t&&count(que[t-],que[t])>=count(que[t],i))t--;
que[++t]=i;
}
printf("%lld",f[n]);
}

[HNOI2008] 玩具装箱 D2 T3 斜率优化DP的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  2. 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...

  3. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  4. _bzoj1010 [HNOI2008]玩具装箱toy【斜率优化dp】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 裸的斜率优化,第一次写队首维护的时候犯了个智障错误,队首维护就是维护队首,我怎么会那队 ...

  5. [HNOI2008]玩具装箱toy(斜率优化dp)

    前言 这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在 描述 给出$n$和$ ...

  6. bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)

    Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...

  7. BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...

  8. 洛谷3195 [HNOI2008]玩具装箱TOY(斜率优化+dp)

    qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp ...

  9. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

随机推荐

  1. Scrapy 常用的shell执行命令

    1.在任意系统下,可以使用 pip 安装 Scrapy pip install scrapy/ 确认安装成功 >>> import scrapy >>> scrap ...

  2. 详述ThreadLocal

    ThreadLocal的作用和目的:用于实现线程内的数据共享,即对于相同的程序代码,多个模块在同一个线程中运行时要共享一份数据,而在另外线程中运行时又共享另外一份数据. 举一个反面例子,当我们使用简单 ...

  3. WebGL 渲染管线

    WebGL 是以 OpenGL ES 2.0 为基础的 3D 编程应用接口. WebGL依赖GPU的图形渲染能力,即依赖硬件设备,所以其渲染流程和GPU内部的渲染管线是相符的.渲染管线的作用是将3D模 ...

  4. 【剑指Offer面试编程题】题目1373:整数中1出现的次数--九度OJ

    题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU发来求助信,希望亲们能帮帮他.问题是:求出1~13的整数中1出现的次数,并算出100~130 ...

  5. 【剑指Offer面试编程题】题目1523:从上往下打印二叉树--九度OJ

    题目描述: 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 输入: 输入可能包含多个测试样例,输入以EOF结束. 对于每个测试案例,输入的第一行一个整数n(1<=n<=1000, ...

  6. div 浮动

    浮动 <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <titl ...

  7. Maven:sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target

    还是记录使用 maven 时遇到的问题. 一.maven报错 maven package 进行打包时出现了以下报错: Non-resolvable parent POM for com.wpbxin: ...

  8. list中会直接绑定HashMap中的数据

    import java.util.ArrayList;import java.util.HashMap;import java.util.List; public class HashMapSync ...

  9. ch8 高度相等的列--CSS方法

    如下图所示效果,可以使用表格实现,本文采用在CSS中实现. 标记如下: <div class="wrapper"> <div class="box&qu ...

  10. i春秋-密码-IceCTF-Alien Message

    题目: 对应的解题图片: 解的时候,符号大点的是大写,小点的是小写. IceCTF{gOOd_n3wZ_3vERyoN3_1_L1k3_fU7ur4Ma_4nd_tH3iR_4maZ1nG_3As7e ...