[HNOI2008] 玩具装箱 D2 T3 斜率优化DP
Description
Input
Output
Sample Input
Sample Output
#include<stdio.h>
#include<algorithm>
#define inf 1e18
using namespace std;
int n,l,sum[],a[];
int que[],h,t;
long long f[],q[],p[];
long long q1(long long x){return f[x]+q[x]*q[x];}
double count(int x,int y){return (q1(x)-q1(y))*1.0/(2.0*(q[x]-q[y]));}
int main()
{
scanf("%d%d",&n,&l);
for(int i=;i<=n;++i)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
sum[i]=a[i]+sum[i-];
for(int i=;i<=n;++i)
f[i]=inf;
for(int i=;i<=n;++i)
q[i]=sum[i]+i;
for(int i=;i<=n;++i)
p[i]=sum[i]+i-l-;
for(int i=;i<=n;++i)
{
while(h<t&&count(que[h],que[h+])<=p[i]*1.0)h++;
f[i]=f[que[h]]+(p[i]-q[que[h]])*(p[i]-q[que[h]]);
while(h<t&&count(que[t-],que[t])>=count(que[t],i))t--;
que[++t]=i;
}
printf("%lld",f[n]);
}
[HNOI2008] 玩具装箱 D2 T3 斜率优化DP的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...
- 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)
传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- _bzoj1010 [HNOI2008]玩具装箱toy【斜率优化dp】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 裸的斜率优化,第一次写队首维护的时候犯了个智障错误,队首维护就是维护队首,我怎么会那队 ...
- [HNOI2008]玩具装箱toy(斜率优化dp)
前言 这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在 描述 给出$n$和$ ...
- bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)
Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...
- BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...
- 洛谷3195 [HNOI2008]玩具装箱TOY(斜率优化+dp)
qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
随机推荐
- android sqlite 图片保存和读出 用流 转字节码
原文:http://blog.sina.com.cn/s/blog_8cfbb99201012oqn.html package com.yiyiweixiao; import android.cont ...
- 四、java基础-面向过程_对象_类中可出现的因素
1.面向过程和面向对象区别: 1)面向过程:开发一个应用程序.一个项目,必须先了解整个过程,了解各个步骤.模块间的因果关系,使的面向过程方式去开发程序时,代码和代码之间的关联程度是非常强.所以其中任何 ...
- springboot,dubbo,nacos,spring-cloud-alibaba的整合
最近,自去年阿里开源了dubbo2.7及一系列产品后,阿里也打造了融入spring-cloud 的生态体系,本人关注,今年阿里开源的的spring-cloud-alibaba基本孵化完成,笔者更是对这 ...
- 7.3 Varnish VCL 常用函数
- Lesson 7 Bats
In what way does echo-location in bats play a utilitarian role? Not all sounds made by animals serve ...
- Codeforces #536 A..D 题解
foreword ummm... 开始前几个小时被朋友拉来打了这一场,总体海星,题目体验极佳,很符合口味,稍微有点点简单了不知道是不是因为是 New Year Round,很快就打到了 D,但是题目阅 ...
- AssetBundle打包依赖(宽宽又欠我一顿烧烤)
using UnityEngine; using System.Collections; using UnityEditor; public class dabao : EditorWindow { ...
- Redis之datatype概述
Redis支持的数据类型 String List Set Sorted Set Hashes Bit array HyperLogLog Bina ...
- python2学习------基础语法2(函数)
1.函数 # 无参数函数 def loopTest2(): a=1; while a<40: print a; a=a+1; if a==35: continue; else: print 'o ...
- mysql5.7修改账户密码
一.首次登录时,修改root账户的密码: vim /etc/my.cnf 在末尾添加 skip-grant-tables ,保存. service mysqld restart 再次登录时,不需要密码 ...