首先有个很奇妙而且很有用的性质:每个二叉树对应唯一的中序遍历,然后每个二叉树出现概率相同。所以n个节点的二叉树形态是n!种(题目中说了*n!已经是提示了),对每种方案求和即可得到期望。令f[i]表示i个节点的子树,根深度为1时,所有点的期望深度之和乘i!的值,令g[i]表示i个节点的子树,期望两两路径之和乘i!的值。

然后得到f[i]=i*i!+ΣC(i-1,L)(f[L]*R!+f[R]*L!),g[i]=ΣC(i-1,L)(g[L]*R!+g[R]*L!+f[L]*R!*(R+1)+f[R]*L!*(L+1)),其中0<=L<i,L、R为左/右子树大小,只需要枚举L即可(因为R=i-1-L),复杂度O(n2)

这题这么水的吗qwq?其实当模数做NTT时,貌似可以分治NTT优化O(nlog2n),反正我不会就不管了。

#include<bits/stdc++.h>
using namespace std;
const int N=;
int n,mod,c[N][N],fac[N],f[N],g[N];
int main()
{
scanf("%d%d",&n,&mod);
fac[]=c[][]=;
for(int i=;i<=n;i++)
{
c[i][]=,fac[i]=1ll*fac[i-]*i%mod;
for(int j=;j<=i;j++)c[i][j]=(c[i-][j-]+c[i-][j])%mod;
}
f[]=;
for(int i=;i<=n;i++)
{
for(int L=;L<i;L++)
{
int R=i--L,F,G;
F=(1ll*f[L]*fac[R]+1ll*f[R]*fac[L])%mod;
G=(1ll*f[L]*fac[R]%mod*(R+)+1ll*f[R]*fac[L]%mod*(L+)+1ll*g[L]*fac[R]+1ll*g[R]*fac[L])%mod;
f[i]=(f[i]+1ll*F*c[i-][L])%mod;
g[i]=(g[i]+1ll*G*c[i-][L])%mod;
}
f[i]=(f[i]+1ll*i*fac[i])%mod;
}
printf("%d",g[n]);
}

[HAOI2018]苹果树(组合数学)的更多相关文章

  1. [HAOI2018]苹果树(组合数学,计数)

    [HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...

  2. [BZOJ5305][HAOI2018]苹果树 组合数学

    链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...

  3. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  4. [洛谷P4492] [HAOI2018]苹果树

    洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...

  5. BZOJ5305 [Haoi2018]苹果树 【组合数学】

    题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...

  6. [BZOJ5305][Haoi2018]苹果树 组合数

    题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...

  7. [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数

    Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...

  8. Luogu4492 [HAOI2018]苹果树 【动态规划】

    题目分析: 思路不难想,考虑三个dp状态$f,g,d$. $g[i]$表示有$i$个点的堆的数量 $d[i]$表示有$i$个点的情况下所有的方案数中点到根的距离和 $f[i]$表示要求的答案. 不难发 ...

  9. HAOI2018苹果树

    题解 首先所有生成树的情况树是\(n!\)的,因为第一次有1中方法,第二次有两种放法,以此类推... 然后我们发现距离这种东西可以直接枚举每条边算贡献. 于是我们枚举了一个点\(i\),又枚举了这个点 ...

随机推荐

  1. js 加密解密 TripleDES

    <!DOCTYPE html> <html lang="en">   <head>     <meta charset="UTF ...

  2. GRADLE依赖的统一管理

    参考链接:http://stormzhang.com/android/2016/03/13/gradle-config/ 我想大部分人应该都在使用Gradle来依赖管理,还没有使用的去面壁思过,Gra ...

  3. 使用DOM4J生成XML文档

    package xml; import java.io.FileOutputStream; import java.util.ArrayList; import java.util.List; imp ...

  4. Unity 协程运行时的监控和优化

    我是快乐的搬运工: http://gulu-dev.com/post/perf_assist/2016-12-20-unity-coroutine-optimizing#toc_0 --------- ...

  5. [CISCN2019 总决赛 Day1 Web4]Laravel1

    0x00 知识点 这个题核心就是找POP链,看了一下网上的WP,难顶啊.. 先贴上思路和poc,之后等熟练了再来做吧 https://glotozz.github.io/2019/11/05/buuc ...

  6. 使用 prototype 定义方法和属性

    除了可以在类的构造器方法中定义方法和属性外,也可以使用 prototype 定义方法和属性.每个类都有这个属性,该属性是一个静态属性,因此无需实例化,只需使用类引用该属性即可. 1.1 使用 prot ...

  7. lvm 逻辑卷分区删除恢复

    原因:执行 lvremove /dev/system/lv_trans 删除逻辑分区 恢复: 1.进入到lvm查看元数据 cd /etc/lvm/archive 2.恢复元vg卷组 vgcfgrest ...

  8. Java中Scanner类在nextInt()后无法输入nextLine()的问题

    首先,Scanner是一个扫描器,它扫描数据都是去内存中一块缓冲区中进行扫描并读入数据的,而我们在控制台中输入的数据也都是被先存入缓冲区中等待扫描器的扫描读取.这个扫描器在扫描过程中判断停止的依据就是 ...

  9. LeetCode——155. 最小栈

    设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈. push(x) -- 将元素 x 推入栈中. pop() -- 删除栈顶的元素. top() -- 获取栈顶元素. ...

  10. windows 10 远程连接出现CredSSP加密Oracle修正错误

    以下方法只受用于windows专业版或者企业版 . 解决方法: 运行 gpedit.msc 本地组策略: 计算机配置>管理模板>系统>凭据分配>加密Oracle修正 选择启用并 ...