Description

Mr.Dog was fired by his company. In order to support his family, he must find a new job as soon as possible. Nowadays, It's hard to have a job, since there are swelling numbers of the unemployed. So some companies often use hard tests for their recruitment.

The test is like this: starting from a source-city, you may pass through some directed roads to reach another city. Each time you reach a city, you can earn some profit or pay some fee, Let this process continue until you reach a target-city. The boss will compute the expense you spent for your trip and the profit you have just obtained. Finally, he will decide whether you can be hired.

In order to get the job, Mr.Dog managed to obtain the knowledge of the net profit Vi of all cities he may reach (a negative Vi indicates that money is spent rather than gained) and the connection between cities. A city with no roads leading to it is a source-city and a city with no roads leading to other cities is a target-city. The mission of Mr.Dog is to start from a source-city and choose a route leading to a target-city through which he can get the maximum profit.

Input

The input file includes several test cases. 
The first line of each test case contains 2 integers n and m(1 ≤ n ≤ 100000, 0 ≤ m ≤ 1000000) indicating the number of cities and roads. 
The next n lines each contain a single integer. The ith line describes the net profit of the city iVi (0 ≤ |Vi| ≤ 20000) 
The next m lines each contain two integers xy indicating that there is a road leads from city x to city y. It is guaranteed that each road appears exactly once, and there is no way to return to a previous city. 

Output

The output file contains one line for each test cases, in which contains an integer indicating the maximum profit Dog is able to obtain (or the minimum expenditure to spend)

Sample Input

6 5
1
2
2
3
3
4
1 2
1 3
2 4
3 4
5 6

Sample Output

7

Hint

题意:给出n个点的权值和m条路径, 问一条路的最大权值是多少.
思路:原本思路是BFS枚举..然而MLE了,那么只能用dp来优化空间了。。两者都是枚举所有情况,前者将每次情况存入队列时容易因为图稠密而MLE;后者仅不断更新dp数组,在空间上节省了很多。
 #include "iostream"

 #include "cstdio"

 #include "cstring"

 #include "algorithm"

 #include "queue"

 #include "stack"

 #include "cmath"

 #include "utility"

 #include "map"

 #include "set"

 #include "vector"

 #include "list"

 #include "string"

 using namespace std;

 typedef long long ll;

 const int MOD = 1e9 + ;

 const int INF = 0x3f3f3f3f;

 const int MAXN = 1e5 + ;

 int n, m, num;

 int cost[MAXN], in[MAXN], out[MAXN], head[MAXN], dp[MAXN];

 bool vis[MAXN];

 struct node

 {

     /* data */

     int fr, to, nxt;

 }e[MAXN * ];

 void add(int x, int y)

 {

     e[num].fr = x;

     e[num].to = y;

     e[num].nxt = head[x];

     head[x] = num++;

 }

 void toposort()

 {

     int cnt = ;

     while(cnt < n) {

         for(int i = ; i <= n; ++i)

             if(in[i] ==  && !vis[i]) {

                 vis[i] = true;

                 cnt++;

                 for(int j = head[i]; j != -; j = e[j].nxt) {

                     int x = e[j].to;

                     in[x]--;

                     if(dp[i] + cost[x] > dp[x]) dp[x] = dp[i] + cost[x];

                 }

             }

     }

 }

 int main(int argc, char const *argv[])

 {

     while(scanf("%d%d", &n, &m) != EOF) {

         memset(in, , sizeof(in));

         memset(out, , sizeof(out));

         memset(head, -, sizeof(head));

         memset(vis, false, sizeof(vis));

         num = ;

         for(int i = ; i <= n; ++i)

             scanf("%d", &cost[i]);

         for(int i = ; i <= m; ++i) {

             int x, y;

             scanf("%d%d", &x, &y);

             add(x, y);

             in[y]++;

             out[x]++;

         }

         for(int i = ; i <= n; ++i)

             if(in[i] == ) dp[i] = cost[i];

             else dp[i] = -INF;

         toposort();

         int ans = -INF;

         for(int i = ; i <= n; ++i)

             if(out[i] ==  && dp[i] > ans) ans = dp[i];

         printf("%d\n", ans);

     }

     return ;

 }

代码转自(https://blog.csdn.net/gkhack/article/details/50223357)

 

POJ 3249 Test for Job(拓扑排序+dp优化空间)的更多相关文章

  1. POJ 3249 Test for Job (拓扑排序+DP)

    POJ 3249 Test for Job (拓扑排序+DP) <题目链接> 题目大意: 给定一个有向图(图不一定连通),每个点都有点权(可能为负),让你求出从源点走向汇点的路径上的最大点 ...

  2. POJ 3249 拓扑排序+DP

    貌似是道水题.TLE了几次.把所有的输入输出改成scanf 和 printf ,有吧队列改成了数组模拟.然后就AC 了.2333333.... Description: MR.DOG 在找工作的过程中 ...

  3. [NOIP2017]逛公园 最短路+拓扑排序+dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...

  4. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  5. 【BZOJ-1194】潘多拉的盒子 拓扑排序 + DP

    1194: [HNOI2006]潘多拉的盒子 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 456  Solved: 215[Submit][Stat ...

  6. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  7. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  8. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  9. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

随机推荐

  1. 题解 P2981 【[USACO10FEB]奶牛在冰Cows on Ice】

    楼上的思路都是从一个石头找跳到另一个石头的路径,但其实这题可以对于上下左右四个方向分别做一个虚拟节点,然后只需要找虚拟节点左边的虚拟节点就行了 问题是:不会用set怎么办??? 其实可以发现用vect ...

  2. Jupyter notebook 和 Jupyter lab 的区别

    Jupyter Notebook Jupyter Notebook 是一个款以网页为基础的交互计算环境,可以创建Jupyter的文档,支持多种语言,包括Python, Julia, R等等.广泛用于数 ...

  3. Django2.0——路由配置

    URL配置就像是Django所支撑网站的目录,它的本质是URL模式以及要为该URL模式调用的视图函数之间的映射表.URL需要在urls.py进行配置,与其对应的视图函数写在views.py文件中.ur ...

  4. _\_call\_\_

    __call__ 一.__call__ 对象后面加括号时,触发执行. 注:构造方法的执行是由创建对象触发的,即:对象 = 类名() :而对于 __call__ 方法的执行是由对象后加括号触发的,即:对 ...

  5. POJ-1751 Highways(最小生成树消边+输出边)

    http://poj.org/problem?id=1751 Description The island nation of Flatopia is perfectly flat. Unfortun ...

  6. 七、Shell脚本高级编程实战第七部

    一.写网络服务的系统启动脚本 利用case语句开发类似系统启动rsync服务的脚本 代码: #!/bin/sah. /etc/init.d/functionspidfile="/var/ru ...

  7. C#的静态方法和实例化方法的区别

    C#的静态方法和实例化方法的区别 在大多数时候,我们写一个方法,会把方法区分为实例化方法和静态方法.而当被问到静态方法和实例化方法的区别的时候,我在写这篇文章的前10分钟,或许我会回答:"静 ...

  8. SVN一直清理解决

    svn作为我们经常使用的版本管理服务器,在使用过程中经常需要通过clean up操作来完成本地文件与服务器文件信息及版本信息同步,然而有时会在执行清理命令时提示“清理失败,请执行清理”,并且提示的中文 ...

  9. Codeforces 1292B/1293D - Aroma's Search

    题目大意: Aroma想要找数据第0个数据再x0,y0这个点其后所有数据所在的坐标点满足x[i]=x[i-1]*ax+bxy[i]=y[i-1]*ay+byAroma一开始在点(xs,ys),她最多只 ...

  10. Cesium 生成terrain地形数据----CTB方式及步骤

    背景:项目前端使用Cesium,地形服务一直使用外网的,常常因为翻墙访问的问题,导致地形数据取不到,进而导致地球不能加载,故决定搭建自己的地形服务,彻底解决这个问题.博文包含以下几个过程: 下载原始地 ...