数学--数论--POJ1365——Prime Land
Description
Everybody in the Prime Land is using a prime base number system. In this system, each positive integer x is represented as follows: Let {pi}i=0,1,2,... denote the increasing sequence of all prime numbers. We know that x > 1 can be represented in only one way in the form of product of powers of prime factors. This implies that there is an integer kx and uniquely determined integers ekx, ekx-1, ..., e1, e0, (ekx > 0), that The sequence
(ekx, ekx-1, ... ,e1, e0)
is considered to be the representation of x in prime base number system.
It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple.
Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''.
Help people in the Prime Land and write a corresponding program.
For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi.
Input
The input consists of lines (at least one) each of which except the last contains prime base representation of just one positive integer greater than 2 and less or equal 32767. All numbers in the line are separated by one space. The last line contains number 0.
Output
The output contains one line for each but the last line of the input. If x is a positive integer contained in a line of the input, the line in the output will contain x - 1 in prime base representation. All numbers in the line are separated by one space. There is no line in the output corresponding to the last ``null'' line of the input.
Sample Input
17 1
5 1 2 1
509 1 59 1
0
Sample Output
2 4
3 2
13 1 11 1 7 1 5 1 3 1 2 1
给你n的因数分解,乘起来然后,分解n-1
直接上重型武器
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <string>
using namespace std;
typedef long long ll;
ll pr;
ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T
ll gmod(ll a, ll b, ll p)
{
ll res = 1;
while (b)
{
if (b & 1)
res = pmod(res, a, p);
a = pmod(a, a, p);
b >>= 1;
}
return res;
}
inline ll gcd(ll a, ll b)
{ //听说二进制算法特快
if (!a)
return b;
if (!b)
return a;
int t = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do
{
b >>= __builtin_ctzll(b);
if (a > b)
{
ll t = b;
b = a, a = t;
}
b -= a;
} while (b);
return a << t;
}
bool Miller_Rabin(ll n)
{
if (n == 46856248255981ll || n < 2)
return false; //强伪素数
if (n == 2 || n == 3 || n == 7 || n == 61 || n == 24251)
return true;
if (!(n & 1) || !(n % 3) || !(n % 61) || !(n % 24251))
return false;
ll m = n - 1, k = 0;
while (!(m & 1))
k++, m >>= 1;
for (int i = 1; i <= 20; ++i) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - 1) + 1, x = gmod(a, m, n), y;
for (int j = 1; j <= k; ++j)
{
y = pmod(x, x, n);
if (y == 1 && x != 1 && x != n - 1)
return 0;
x = y;
}
if (y != 1)
return 0;
}
return 1;
}
ll _abs(ll a){
if(a>=0) return a;
else return -a;
}
ll Pollard_Rho(ll x)
{
ll n = 0, m = 0, t = 1, q = 1, c = rand() % (x - 1) + 1;
for (ll k = 2;; k <<= 1, m = n, q = 1)
{
for (ll i = 1; i <= k; ++i)
{
n = (pmod(n, n, x) + c) % x;
q = pmod(q, _abs(m - n), x);
}
t = gcd(x, q);
if (t > 1)
return t;
}
}
map<long long, int> m;
void fid(ll n)
{
if (n == 1)
return;
if (Miller_Rabin(n))
{
pr = max(pr, n);
m[n]++;
return;
}
ll p = n;
while (p >= n)
p = Pollard_Rho(p);
fid(p);
fid(n / p);
}
int main()
{
ll n, a;
int b;
while (1)
{
n = 1;
while (true)
{
scanf("%lld", &a);
if (a == 0)
return 0;
char c = getchar();
if (c == '\n')
break;
scanf("%d", &b);
c = getchar();
for (int i = 1; i <= b; i++)
n *= a;
if (c == '\n')
break;
}
n--;
m.clear();
pr = 0;
fid(n);
for (map<long long, int>::iterator c = m.end(); c != m.begin();)
{
--c;
printf("%lld %d ", c->first, c->second);
}
puts(" ");
}
return 0;
}
数学--数论--POJ1365——Prime Land的更多相关文章
- [暑假集训--数论]poj1365 Prime Land
Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...
- POJ1365 - Prime Land(质因数分解)
题目大意 给定一个数的质因子表达式,要求你计算机它的值,并减一,再对这个值进行质因数分解,输出表达式 题解 预处理一下,线性筛法筛下素数,然后求出值来之后再用筛选出的素数去分解....其实主要就是字符 ...
- POJ1365 Prime Land【质因数分解】【素数】【水题】
题目链接: http://poj.org/problem?id=1365 题目大意: 告诉你一个数的质因数x的全部底数pi和幂ei.输出x-1的质因数的全部底数和幂 解题思路: 这道题不难.可是题意特 ...
- POJ 1365 Prime Land(数论)
题目链接: 传送门 Prime Land Time Limit: 1000MS Memory Limit: 10000K Description Everybody in the Prime ...
- [POJ 1365] Prime Land
Prime Land Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3211 Accepted: 1473 Descri ...
- 数学--数论--HDU2136 Largest prime factor 线性筛法变形
Problem Description Everybody knows any number can be combined by the prime number. Now, your task i ...
- pku1365 Prime Land (数论,合数分解模板)
题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...
- NOIP复习之1 数学数论
noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...
- Prime Land
http://poj.org/problem?id=1365 题意:给定一个数字n的拆分形式,然后让你求解n-1的值: 解析:直接爆搞 // File Name: poj1365.cpp // Aut ...
随机推荐
- 机器学习4- 多元线性回归+Python实现
目录 1 多元线性回归 2 多元线性回归的Python实现 2.1 手动实现 2.1.1 导入必要模块 2.1.2 加载数据 2.1.3 计算系数 2.1.4 预测 2.2 使用 sklearn 1 ...
- Unity - 旋转方法
前言 本文梳理了Unity中常用的旋转方法,涉及两大类:Transform.Quaternion. Transform 类 Rotate() 此方法重载多,易理解,在连续动态旋转中较为常用. /* o ...
- <E> 泛型
/* * 使用集合存储自定义对象并遍历 * 由于集合可以存储任意类型的对象,当我们存储了不同类型的对象,就有可能在转换的时候出现类型转换异常, * 所以java为了解决这个问题,给我们提供了一种机制, ...
- scala_spark实践1
/** * scala模型的main(args:Array[String])是业务执行入口 * org.apache.spark.{SparkConf, SparkContext} * val spa ...
- 1、2、2、3、4、5这六个数字,用java写一个main函数,打印出所有不同的排列, 如:512234、212345等. 要求:”4”不能在第三位,”3”与”5”不能相连。
private static String[] mustExistNumber = new String[] { "1", "2", "2" ...
- Android电池信息获取
Android 可以通过BroadcastReceiver来获取电池信息改变的广播(ACTION_BATTERY_CHANGED),从而获取到相关的电池信息. 电池信息,及其对应的相关常数(参考网址: ...
- Starlims Client Request Portal 客户申请门户
用户可以直接在starlims对外的"客户申请门户"上发起检验申请,并追踪检验进度等. 工作流程图示如下:
- windows批处理protoc生成C++代码
1 首先需要生成protoc的可执行文件,具体可以参考 https://www.cnblogs.com/cnxkey/articles/10152646.html 2 将单个protoc文件生成.h ...
- python selenium模块 xpath定位
''' 附w3xpath语法地址 https://www.w3school.com.cn/xpath/xpath_syntax.asp 总结: 返回匹配到所有符合条件的第一个节点,对象是 <cl ...
- [转]sql二次注入
01 二次注入原理 二次注入可以理解为,攻击者构造的恶意数据存储在数据库后,恶意数据被读取并进入到SQL查询语句所导致的注入.防御者可能在用户输入恶意数据时对其中的特殊字符进行了转义处理,但在恶意数据 ...