pandas是在数据处理、数据分析以及数据可视化上都有比较多的应用,这篇文章就来介绍一下pandas的入门。劳动节必须得劳动劳动

1. 基础用法

以下代码在jupyter中运行,Python 版本3.6。首先导入 pandas

import pandas as pd

# 为了能在jupyter中展示图表
%matplotlib inline
# 从csv文件读取数据,也可从excel、json文件中读取
# 也可以通过sql从数据库读数据
data = pd.read_csv('order_list.csv')
# 输出几行几列
data.shape output:
(1000, 3)

可以看到,变量 data 是一个二维表,有1000行,3列。pandas中这种数据类型被称作 DataFrame。

# 查看数据描述
data.describe()


data 中有3列,good_id、good_cnt 和 order_id 分别代表商品id、购买该商品数量和订单id。最左侧是describe函数统计的指标,包括每一列的数量、均值、标准差、最大值、最小值等等。

# 预览数据,条数可设
data.head(3)
# 获取第2行数据
data.loc[2] output:
good_id 100042
good_cnt 1
order_id 10000002
Name: 2, dtype: int64
# 获取多行数据,数组元素代表行号
data.loc[[1, 2]]
# 获取商品id=100012的所有记录
data[data['good_id']==100012]
# 获取商品id=100012且每笔订单销量=6的所有记录
data[(data['good_id']==100087) & (data['good_cnt']==6)]
# 获取订单号在[10000000, 10000042]中的记录
data[data['order_id'].isin([10000000, 10000042])]
# 画100012商品,每笔订单销量折线图
data[data['good_id']==100012]['good_cnt'].plot()
# 画100012商品,销量柱状图
data[data['good_id']==100012]['good_cnt'].hist()
# 更新数据,将第1行的good_cnt列改为10
data.loc[1, 'good_cnt'] = 10
data.head(3)
# 将100012商品每笔订单销量都改为20
data.loc[data['good_id']==100012, 'good_cnt'] = 20
data.head(3)

2. 中级用法

# 统计每种商品出现次数
# 即:每种商品的下单次数
data['good_id'].value_counts()
output:
100080 18
100010 16
100073 16
100097 15
100096 15
..
100079 5
100077 5
100007 4
100037 4
100033 4
Name: good_id, Length: 100, dtype: int64
# 取出商品销量列,该列中每个值都加1
data['good_cnt'].map(lambda x: x+1)
output:
0 21
1 11
2 2
3 4
4 10
..
995 8
996 9
997 6
998 5
999 9
Name: good_cnt, Length: 1000, dtype: int64

这里,map并不改变原有的 data 中的数据,而是返回新的对象。

# 对数据集每列调用给定的函数
data.apply(len)

这里是对每列执行len函数,当然apply中的len函数也可以换成自定义的 lambda 表达式。另外,如果想按行做处理,则在调用apply函数时加上axis=1参数即可。

# 对数据集中所有元素调用给定函数
# 同样不改变原有数据集
data.applymap(lambda x: x*100)
# 计算每列之间的相关系数
data.corr()
# 画出相关系数矩阵
pd.plotting.scatter_matrix(data, figsize=(12,8))


以左小角为例,它表示商品id(good_id)和订单id(order_id)之间的相关性。由于点比较分散,没有任何规律,因此可以说明这两列在数据值上没有相关性,这也好理解,因为本来它俩就是不同的概念。

相关系数矩阵一般用于机器学习中观察不同特征之间的相关性。

3. 高级用法

实现SQL join操作


# 构造DateFrame,代表订单发生的城市
order_city_df = pd.DataFrame(\
dict(order_id=[10000000, 10000001], \
city=['上海', '北京'])\
) # 实现join
data.merge(order_city_df, on=['order_id'])

实现SQL group by操作

# 统计每个商品的总销量
data.groupby('good_id')['good_cnt'].sum().reset_index()

遍历 DataFrame 中每行数据

dictionary = {}

for i,row in data.iterrows():
dictionary[row['good_id']] = row['good_cnt']

pandas的入门就介绍到这里,希望能对你有帮助。对于想继续深入的朋友可以参考pandas官方文档,中英文都有。另外,我们使用pandas一般都是单机来处理,如果数据量比较大,单机运行起来会比较慢。这时候你可能会用到另外一个工具叫 Dask,它的接口兼容 pandas,可以与pandas相互转换,并且可以运行在集群上分布式处理数据。

如需完整代码,在公众号回复关键字 pd 即可

欢迎公众号「渡码」,输出别地儿看不到的干货。

5分钟入门pandas的更多相关文章

  1. (转)十分钟入门pandas

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook . 习 ...

  2. python 10分钟入门pandas

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...

  3. 快速入门Pandas

    教你十分钟学会使用pandas. pandas是python数据分析的一个最重要的工具. 基本使用 # 一般以pd作为pandas的缩写 import pandas as pd # 读取文件 df = ...

  4. 快速入门 Pandas

    先po几个比较好的Pandas入门网站十分钟入门:http://www.codingpy.com/article/a-quick-intro-to-pandas/手册前2章:http://pda.re ...

  5. Shell脚本编程30分钟入门

    Shell脚本编程30分钟入门 转载地址: Shell脚本编程30分钟入门 什么是Shell脚本 示例 看个例子吧: #!/bin/sh cd ~ mkdir shell_tut cd shell_t ...

  6. Objective-C 30分钟入门教程

    Objective-C 30分钟入门教程 我第一次看OC觉得这个语言的语法有些怪异,为什么充满了@符号,[]符号,函数调用没有()这个,但是面向对象的高级语言也不外乎类,接口,多态,封装,继承等概念. ...

  7. Apache Shiro系列三,概述 —— 10分钟入门

     一.介绍 看完这个10分钟入门之后,你就知道如何在你的应用程序中引入和使用Shiro.以后你再在自己的应用程序中使用Shiro,也应该可以在10分钟内搞定. 二.概述 关于Shiro的废话就不多说了 ...

  8. JavaScript 10分钟入门

    JavaScript 10分钟入门 随着公司内部技术分享(JS进阶)投票的失利,先译一篇不错的JS入门博文,方便不太了解JS的童鞋快速学习和掌握这门神奇的语言. 以下为译文,原文地址:http://w ...

  9. 十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less))

    十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less)) 注:本文为翻译文章,因翻译水平有限,难免有缺漏不足之处,可查看原文. 我们知道写css代码是非常枯燥的 ...

随机推荐

  1. 程序员的 Ubuntu 19.10 配置与优化指南

    原文地址:程序员的 Ubuntu 19.10 配置与优化指南 0x00 环境 CPU: Intel Core i9-9900k GPU: GeForce RTX 2070 SUPER RAM: DDR ...

  2. "六号标题"组件:<h6> —— 快应用组件库H-UI

     <import name="h6" src="../Common/ui/h-ui/text/c_h6"></import> < ...

  3. "段落"组件:<p> —— 快应用组件库H-UI

     <import name="p" src="../Common/ui/h-ui/text/c_p"></import> <te ...

  4. 使用rem配置PC端自适应大屏

    效果如下 使得大屏不论在什么宽高比例依然能展示全部数据 安装 npm install -S postcss-pxtorem rem配置思路 原先的rem函数是能解决大部分的问题的,如果展示不全,也可以 ...

  5. 表字段或表名出现Mysql关键字或保留字导致问题 Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You have

    MySQL 5.7使用的关键字和保留字 https://dev.mysql.com/doc/refman/5.7/en/keywords.html 当我们建表的时候如果使用了关键字或者保留字,则在执行 ...

  6. sqli-labs通关----11~20关

    第十一关 从第十一关开始,就开始用post来提交数据了,我们每关的目的都是获取users表下password字段的内容. post是一种数据提交方式,它主要是指数据从客户端提交到服务器端,例如,我们常 ...

  7. Git应用详解第十讲:Git子库:submodule与subtree.md

    前言 前情提要:Git应用详解第九讲:Git cherry-pick与Git rebase 一个中大型项目往往会依赖几个模块,git提供了子库的概念.可以将这些子模块存放在不同的仓库中,通过submo ...

  8. D - Harmonious Graph

    题目大意: n个点,m条边,两个数l和r,如果l和r相连接,那么对于l和r之间值任意一个数都要和l相连.问达到这一目的需要添加的边的最小数量. 题解: 我们首先要找到当前连通块中最大的那个点,也就是说 ...

  9. [V&N2020 公开赛]TimeTravel 复现

    大佬友链(狗头):https://www.cnblogs.com/p201821440039/ 参考博客: https://www.zhaoj.in/read-6407.html https://cj ...

  10. [linux][mysql] MySQL中information_schema是什么

    来源:MySQL中information_schema是什么 information_schema数据库是MySQL自带的,information_schema提供了访问数据库元数据的方式.这就是?元 ...