ACM思维题训练集合

You are given two integers n and d. You need to construct a rooted binary tree consisting of n vertices with a root at the vertex 1 and the sum of depths of all vertices equals to d.

A tree is a connected graph without cycles. A rooted tree has a special vertex called the root. A parent of a vertex v is the last different from v vertex on the path from the root to the vertex v. The depth of the vertex v is the length of the path from the root to the vertex v. Children of vertex v are all vertices for which v is the parent. The binary tree is such a tree that no vertex has more than 2 children.

You have to answer t independent test cases.

Input

The first line of the input contains one integer t (1≤t≤1000) — the number of test cases.

The only line of each test case contains two integers n and d (2≤n,d≤5000) — the number of vertices in the tree and the required sum of depths of all vertices.

It is guaranteed that the sum of n and the sum of d both does not exceed 5000 (∑n≤5000,∑d≤5000).

Output

For each test case, print the answer.

If it is impossible to construct such a tree, print “NO” (without quotes) in the first line. Otherwise, print “{YES}” in the first line. Then print n−1 integers p2,p3,…,pn in the second line, where pi is the parent of the vertex i. Note that the sequence of parents you print should describe some binary tree.

Example

inputCopy

3

5 7

10 19

10 18

outputCopy

YES

1 2 1 3

YES

1 2 3 3 9 9 2 1 6

NO

Note

Pictures corresponding to the first and the second test cases of the example:



丫的,改了一天。

如果b在构造的树的深度最大(左偏或右偏树)和最小(满二叉树)之内就能构成,然后从左偏树开始不断的将低端的点向上移动,知道达到要求。

#include <bits/stdc++.h>
using namespace std;
int f[210];
inline void solve()
{
memset(f, 0, sizeof(f));
int n, d, maxd = 0;
scanf("%d %d", &n, &d);
--n;
if (d > n * (n + 1) / 2)
{
printf("NO\n");
return;
} //1
for (int i = 1;; ++i)
{
maxd = i;
if (n > (1 << i))
{
d -= i * (1 << i);
f[i] = 1 << i;
n -= 1 << i;
}
else
{
d -= i * n;
f[i] = n;
n -= n;
break;
}
}
if (d < 0)
{
printf("NO\n");
return;
}
while (1)
{
if (d == 0)
break;
int p;
for (p = maxd; p >= 1; --p)
if (f[p] > 1)
break;
--d;
--f[p];
++f[p + 1];
if (p + 1 > maxd)
maxd = p + 1;
}
printf("YES\n");
int p = 1, np = 1, cnt;
for (int i = 1; i <= maxd; ++i)
{
int t = p;
cnt = 0;
for (int j = 1; j <= f[i]; ++j)
{
++p;
++cnt;
if (cnt >= 3)
{
++np;
cnt = 1;
}
printf("%d ", np);
}
np = t + 1;
}
printf("\n");
}
int main()
{
int t;
scanf("%d", &t);
for (int i = 1; i <= t; ++i)
solve();
return 0;
}

codeforce 1311E. Construct the Binary Tree (构造,就是个模拟)的更多相关文章

  1. [CF1311E] Construct the Binary Tree - 构造

    Solution 预处理出 \(i\) 个点组成的二叉树的最大答案和最小答案 递归做,由于只需要构造一种方案,我们让左子树大小能小就小,因此每次从小到大枚举左子树的点数并检验,如果检验通过就选定之 现 ...

  2. HDU 5573 Binary Tree 构造

    Binary Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5573 Description The Old Frog King lives ...

  3. [Algorithm] Construct a Binary Tree and Binary Search

    function createNode(value) { return { value, left: null, right: null }; } function BinaryTree(val) { ...

  4. 详细讲解Codeforces Round #624 (Div. 3) E. Construct the Binary Tree(构造二叉树)

    题意:给定节点数n和所有节点的深度总和d,问能否构造出这样的二叉树.能,则输出“YES”,并且输出n-1个节点的父节点(节点1为根节点). 题解:n个节点构成的二叉树中,完全(满)二叉树的深度总和最小 ...

  5. CF1311E Construct the Binary Tree

    膜这场比赛的 \(rk1\) \(\color{black}A\color{red}{lex\_Wei}\) 这题应该是这场比赛最难的题了 容易发现,二叉树的下一层不会超过这一层的 \(2\) 倍,所 ...

  6. Data Structure Binary Tree: Construct Full Binary Tree from given preorder and postorder traversals

    http://www.geeksforgeeks.org/full-and-complete-binary-tree-from-given-preorder-and-postorder-travers ...

  7. [Swift]LeetCode105. 从前序与中序遍历序列构造二叉树 | Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. [Swift]LeetCode106. 从中序与后序遍历序列构造二叉树 | Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  9. [Leetcode] Construct binary tree from preorder and inorder travesal 利用前序和中续遍历构造二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:  You may assume tha ...

随机推荐

  1. django-生产和测试环境分离

    django-生产和测试环境分离 在settings.py的同级目录下新建settings的文件夹 在settings文件夹下新建 __init__.py base.py develop.py pro ...

  2. flask开启调试的四种模式

    flask开启调试的四种模式 在app.run()中加一个参数, 'debug=True'就可以开启debug模式 from flask import Flask app = Flask(__name ...

  3. boost multi_index简单了解

    #include <string> #include <iostream> #include <boost/multi_index_container.hpp> # ...

  4. "额外插入的文本"组件:<ins> —— 快应用组件库H-UI

     <import name="ins" src="../Common/ui/h-ui/text/c_tag_underline"></imp ...

  5. Python中关于字符串你应该知道这些...

    # Python中字符串的常见用法### 定义:带有双引号/单引号/三引号### 双引号:适用于所写的字符串里没有双引号的.例如:"凡是“辛苦”必是礼物"报错​### 单引号:适用 ...

  6. 查看jdk 线程 日志

    命令:jstack(查看线程).jmap(查看内存)和jstat(性能分析)命令 这些命令 必须 在 linux jdk bin 路径 下执行 eq: ./jstack 10303 即可  如果想把 ...

  7. 收集免费的接口服务,做一个api的搬运工

    hello, 大家好,今天给大家推荐的开源项目在某种程度上极大的方便了广大的开发者,这个开源项目统计了网上诸多的免费API,为广大开发者收集免费的接口服务,专心致志做一个API的搬运工,每月定时更新新 ...

  8. IOCP完成端口

    转:https://blog.csdn.net/piggyxp/article/details/6922277 本系列里完成端口的代码在两年前就已经写好了,但是由于许久没有写东西了,不知该如何提笔,所 ...

  9. 熬夜整理出来的干货:Python+Pycharm+PyQT5可视化程序设计入门

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:朱淑强 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自 ...

  10. windows编译动态链接库,dll+lib的形式

    之前一直在linux上做开发,没怎么关注过windows上如何编译动态链接库.不过一直存疑,为什么windows上的动态链接库是.dll配合.lib使用的,这个又是怎么生成的呢,通过一段时间的查资料和 ...