设x,y是概率空间(Ω,F,P)上的拟可积随机变量,证明:X=Y a.e 当且仅当 xdp = ydp 对每个A∈F成立。Q: X=Y almost surely iff ∀A∈G∫AXdP=∫AYdP
E{XE{Y|C}}=E{YE{X|C}}
现在有没有适合大学生用的搜题软件呢? https://www.zhihu.com/question/51935291/answer/514312093 Approach0 (https://approach0.xyz/search/) 专门用来搜索 Math StackExchange (支持数学公式)。
the if direction:
zhihu search: math stack exchange
math exchange
2,slader: 这个软件是帮助你写作业的,一般的教科书后面会有答案,但不会有详解,这个软件会帮助你更好的学习。
手机上当然首推Desmos,Wolfram Alpha还有Brilliant啦!
Math Lab。能解微分方程能画心型图神器
设x,y是概率空间(Ω,F,P)上的拟可积随机变量,证明:X=Y a.e 当且仅当 xdp = ydp 对每个A∈F成立
Let (Ω,F,P)(Ω,F,P) be a probability space with G⊂FG⊂F. Let X,YX,Y be GG-measurable, and integrable. Then, how does one prove that
X=YX=Y almost surely iff ∀A∈G∫AXdP=∫AYdP∀A∈G∫AXdP=∫AYdP?
Here's my try: ∫AXdP=∫AYdP⇔∫AX−YdP=∫A(X−Y)1[X≥Y]+(Y−X)1[X<Y]dP=0∫AXdP=∫AYdP⇔∫AX−YdP=∫A(X−Y)1[X≥Y]+(Y−X)1[X<Y]dP=0
For A=[Y≥X]A=[Y≥X], we get ∫[X≥Y]X−YdP=0∫[X≥Y]X−YdP=0 which implies, by nonnegativity of X−YX−Y on A, P(X=Y)=P(X≥Y)P(X=Y)=P(X≥Y) or P(X≥Y)=0P(X≥Y)=0
For A=[Y<X]A=[Y<X], we get ∫[X<Y]Y−XdP=0∫[X<Y]Y−XdP=0 which implies, by nonnegativity of X−YX−Y on A, P(X=Y)=P(X<Y)P(X=Y)=P(X<Y) or P(X<Y)=0P(X<Y)=0
So, we get
which gives P(X=Y)=1P(X=Y)=1.
I can choose A as above since the sum of measurable functions is also measurable [X>Y]=[X−Y>0][X>Y]=[X−Y>0]
Is this a proper proof?
- @Math1000 I've corrected the typos. – An old man in the sea. Oct 30 '17 at 11:49
现在有没有适合大学生用的搜题软件呢?
设x,y是概率空间(Ω,F,P)上的拟可积随机变量,证明:X=Y a.e 当且仅当 xdp = ydp 对每个A∈F成立。Q: X=Y almost surely iff ∀A∈G∫AXdP=∫AYdP的更多相关文章
- 设 $y_1(x), y_2(x)$ 是 $y''+p(x)y'+q(x)y=0$ 的两个解 ($p(x), q(x)$ 连续), 且 $y_1(x_0)=y_2(x_0)=0$, $y_1(x)\not\equiv 0$. 试证: $y_1(x)$, $y_2(x)$ 线性相关.
设 $y_1(x), y_2(x)$ 是 $y''+p(x)y'+q(x)y=0$ 的两个解 ($p(x), q(x)$ 连续), 且 $y_1(x_0)=y_2(x_0)=0$, $y_1(x)\n ...
- Problem F: 平面上的点——Point类 (VI)
Description 在数学上,平面直角坐标系上的点用X轴和Y轴上的两个坐标值唯一确定.现在我们封装一个“Point类”来实现平面上的点的操作. 根据“append.cc”,完成Point类的构造方 ...
- 将C语课设传到了Github和Code上 2015-91-18
一直听说Git好使,以前捣鼓过没弄成,现在考完试了终于可以静下心来研究研究. 哎,我要是当时做课设的时候就用Git,也能省下不少事呢. 使用的Git教程,刚看个开头: 廖雪峰的Git教程 http:/ ...
- OCR文字设别软件没有权限管理服务器上的许可证怎么办
在使用ABBYY产品,无论是ABBYY FineReader 12,还是ABBYY PDF Transformer+的时候,当你启动许可管理器时,可能会出现"您没有权限管理许可服务器(服务器 ...
- java引用如果是成员变量则引用本身不保存在栈上的汇编级调试证明
很久很久没有更新博客了,因为发生太多太多猝不及防的事情,再加上自己本身也特别忙,这里补上一直想发的自己觉得很有意义的一次探索过程. 就是很多java开发人员都曾被误导的一个点——“如果一个变量是引用, ...
- Python - Django - 上传文件
upload.html: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...
- 斯坦福大学CS224d基础1:线性代数回顾
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...
- [HNOI2015]落忆枫音
题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再 ...
- BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...
随机推荐
- node - 路由的使用
一,服务器文件 app.js .( 要使用路由的文件) const express = require('express') const app = express() const swig = ...
- require(): open_basedir restriction in effect. File(/www/wwwroot/xcx/zerg/thinkphp/start.php) is not within the allowed path(s): (/www/wwwroot/xcx/zerg/public/:/tmp/:/proc/) in /www/wwwroot/xcx/zerg/p
解决方法: 在如下文件增加一项(如图所示) 在如下文件增加一项(如图所示): #php文件采用fastcgi解析并设置参数 location ~ \.php { try_files ...
- 023-PHP常用数组函数
<?php $colors = array("red", "green", "blue","yellow"); p ...
- 干货分享:学术Essay写作流程及写作技巧详解
Academic essay是指留学生作业中的一种,其范围非常广泛,可以是任何一种话题.而学术essay主要是指其中比较正式的.客观的话题,有明确的研究目的与研究对象.例如“Research on t ...
- 基于Windows平台的Python多线程及多进程学习小结
python多线程及多进程对于不同平台有不同的工具(platform-specific tools),如os.fork仅在Unix上可用,而windows不可用,该文仅针对windows平台可用的工具 ...
- Python 异常处理(Try...Except)
版权所有,未经许可,禁止转载 章节 Python 介绍 Python 开发环境搭建 Python 语法 Python 变量 Python 数值类型 Python 类型转换 Python 字符串(Str ...
- js 加密解密 TripleDES
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...
- DevOps专题|基础Agent部署系统
随着京东云业务规模.管理机器规模的扩大,各类agent也在逐渐增多,如日志agent.监控agent.控制系统agent等.这对agent的部署.升级.状态维护提出了很高的要求,一旦某个全局agent ...
- css3 实现渐变边框
(1)一个渐变的底边线border:1px solid transparent;border-image: -webkit-linear-gradient(right, #FF9848,#FF2A2B ...
- pandas dataframe取差集:删掉已存在的数据,保留未插入的数据
适用场景: 插入数据到mysql中,中途中断,导致部分数据未插入成功.避免下次插入时插入了重复的数据. 思路: 1.读取已插入的数据, 2.读取全部数据(包含已插入和未插入的), 3.将已插入的数据添 ...