【XSY1529】小Q与进位制 分治 FFT
题目大意
小Q发明了一种进位制,每一位的变化范围是\(0\)~\(b_i-1\),给你一个这种进位制下的整数\(a\),问你有多少非负整数小于\(a\)。结果以十进制表示。
\(n\leq 120000,0\leq a_i<b_i\leq 1000000\)
题解
就是求这个数。
那没什么好说的,直接分治FFT
处理左半边(低位)的\(c_1=\prod b_i\)和答案\(d_1\),右半边的\(c2,d2\)
那么\(c=c_1\times c_2,d=d_2\times c_1+d_1\)
时间复杂度:\(O(n\log^2 n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
//typedef long double ld;
typedef double ld;
//const ld pi=3.1415926535897932384626433832L;
const ld pi=acos(ld(-1));
struct cp
{
ld x,y;
cp(ld _x=0,ld _y=0)
{
x=_x;
y=_y;
}
};
cp conj(cp &a){return cp(a.x,-a.y);}
cp operator +(cp &a,cp &b){return cp(a.x+b.x,a.y+b.y);}
cp operator -(cp &a,cp &b){return cp(a.x-b.x,a.y-b.y);}
cp operator *(cp &a,cp &b){return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
cp operator /(cp &a,ld b){return cp(a.x/b,a.y/b);}
cp a1[500010];
cp a2[500010];
cp a3[500010];
cp w1[500010];
cp w2[500010];
int rev[500010];
int N;
namespace fft
{
void get(int n)
{
N=1;
while(N<n)
N<<=1;
int i;
for(i=2;i<=N;i<<=1)
{
w1[i]=cp(cos(ld(2*pi/i)),sin(ld(2*pi/i)));
w2[i]=conj(w1[i]);
}
for(i=0;i<N;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?(N>>1):0);
}
void fft(cp *a,int t)
{
int i,j,k;
cp w,wn,u,v;
for(i=0;i<N;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=N;i<<=1)
{
wn=t?w1[i]:w2[i];
for(j=0;j<N;j+=i)
{
w=cp(1);
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w;
a[k]=u+v;
a[k+i/2]=u-v;
w=w*wn;
}
}
}
if(!t)
for(i=0;i<N;i++)
a[i]=a[i]/N;
}
}
ll a[500010];
ll b[500010];
ll c[500010];
ll d[500010];//答案
ll e[500010];
ll f[500010];
const ll A=1000;
const ll B=1000000;
void cheng(ll *a1,int n1,ll *a2,int n2,ll *a3,int n3)
{
int i,j;
for(i=0;i<n3;i++)
a3[i]=0;
for(i=0;i<n1;i++)
for(j=0;j<n2;j++)
a3[i+j]+=a1[i]*a2[j];
}
void clear(ll *a,int n)
{
int i;
for(i=0;i<n;i++)
a[i]=0;
}
void cheng(ll *a1,int n1,ll a2)
{
int i;
for(i=0;i<n1;i++)
a1[i]*=a2;
}
void jia(ll *a1,int n1,ll *a2,int n2,ll *a3,int n3)
{
int i;
for(i=0;i<n3;i++)
a3[i]=0;
for(i=0;i<n1||i<n2;i++)
{
ll s1=(i<n1?a1[i]:0);
ll s2=(i<n2?a2[i]:0);
a3[i]+=s1+s2;
}
}
void jia(ll *a1,ll *a2,int n2)
{
int i;
for(i=0;i<n2;i++)
a1[i]+=a2[i];
}
void solve(int l,int r)
{
if(l==r)
{
// d[l]=b[l];
// c[l]=a[l];
d[l*2]=b[l]%A;
d[l*2+1]=b[l]/A;
c[l*2]=a[l]%A;
c[l*2+1]=a[l]/A;
return;
}
if(r-l+1<=20)
{
int i,j;
int len=(r-l+1);
clear(c+l*2,len*2);
clear(d+l*2,len*2);
c[l*2]=1;
for(i=0;i<len;i++)
{
memcpy(e+l*2,c+l*2,len*sizeof(ll)*2);
cheng(e+l*2,len*2,b[l+i]);
for(j=0;j<len*2-1;j++)
{
e[l*2+j+1]+=e[l*2+j]/A;
e[l*2+j]%=A;
}
jia(d+l*2,e+l*2,len*2);
for(j=0;j<len*2-1;j++)
{
d[l*2+j+1]+=d[l*2+j]/A;
d[l*2+j]%=A;
}
cheng(c+l*2,len*2,a[l+i]);
for(j=0;j<len*2-1;j++)
{
c[l*2+j+1]+=c[l*2+j]/A;
c[l*2+j]%=A;
}
}
return;
}
int mid=(l+r)>>1;
solve(l,mid);
solve(mid+1,r);
int llen=mid-l+1;
int rlen=r-mid;
int len=r-l+1;
llen*=2;
rlen*=2;
len*=2;
// if(len>50000&&r==69999)
// int xfz=1;
// if(l==0)
// int xfz=1;
int i;
fft::get(len);
for(i=0;i<llen;i++)
a1[i]=cp(c[l*2+i]);
for(i=llen;i<N;i++)
a1[i]=cp();
for(i=0;i<rlen;i++)
{
a2[i]=cp(c[mid*2+2+i]);
a3[i]=cp(d[mid*2+2+i]);
}
for(i=rlen;i<N;i++)
a2[i]=a3[i]=cp();
fft::fft(a1,1);
fft::fft(a2,1);
fft::fft(a3,1);
for(i=0;i<N;i++)
{
a2[i]=a2[i]*a1[i];
a3[i]=a3[i]*a1[i];
}
fft::fft(a2,0);
fft::fft(a3,0);
// if(len>50000&&r==69999)
// int xfz=1;
for(i=0;i<len;i++)
{
c[l*2+i]=ll(a2[i].x+0.4);
e[l*2+i]=ll(a3[i].x+0.4);
}
for(i=0;i<llen;i++)
e[l*2+i]+=d[l*2+i];
for(i=0;i<len;i++)
d[l*2+i]=e[l*2+i];
for(i=0;i<len-1;i++)
{
c[l*2+i+1]+=c[l*2+i]/A;
c[l*2+i]%=A;
d[l*2+i+1]+=d[l*2+i]/A;
d[l*2+i]%=A;
}
// cheng(c+l,llen,d+mid+1,rlen,e,len);
// jia(e,len,d+l,llen,f,len);
// int i;
// for(i=0;i<len;i++)
// d[l+i]=f[i];
// for(i=0;i<len-1;i++)
// {
// d[l+i+1]+=d[l+i]/A;
// d[l+i]%=A;
// }
// cheng(c+l,llen,c+mid+1,rlen,e,len);
// for(i=0;i<len;i++)
// c[l+i]=e[i];
// for(i=0;i<len-1;i++)
// {
// c[l+i+1]+=c[l+i]/A;
// c[l+i]%=A;
// }
}
int main()
{
// freopen("conv.in","r",stdin);
// freopen("conv-2.out","w",stdout);
int n;
scanf("%d",&n);
int i;
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n;i++)
scanf("%d",&b[i]);
solve(0,n-1);
for(i=2*n-1;!d[i];i--);
printf("%d",d[i]);
for(i--;i>=0;i--)
// output(d[i]);
printf("%03d",d[i]);
putchar('\n');
// int n=4;
// fft::get(n);
// a1[0]=cp(1);
// a1[1]=cp(2);
// a2[0]=cp(1);
// a2[1]=cp(2);
// fft::fft(a1,1);
// fft::fft(a2,1);
// int i;
// for(i=0;i<N;i++)
// a1[i]=a1[i]*a2[i];
// fft::fft(a1,0);
return 0;
}
【XSY1529】小Q与进位制 分治 FFT的更多相关文章
- (2016北京集训十)【xsy1529】小Q与进位制 - 分治FFT
题意很简单,就是求这个数... 其实场上我想出了分治fft的正解...然而不会打...然后打了个暴力fft挂了... 没啥好讲的,这题很恶心,卡常卡精度还爆int,要各种优化,有些dalao写的很复杂 ...
- 2016北京集训 小Q与进位制
题目大意 一个数每一位进制不同,已知每一位的进制,求该数的十进制表达. 显然有 $$Ans=\sum\limits_{i=0}^{n-1}a_i \prod\limits_{j=0}^{i-1}bas ...
- BZOJ5125: [Lydsy1712月赛]小Q的书架【决策单调性优化DP】【BIT】【莫队】【分治】
小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去.将所有书都放到 ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
- bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- 【XSY2666】排列问题 DP 容斥原理 分治FFT
题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相 ...
- 【BZOJ5119】【CTT2017】生成树计数 DP 分治FFT 斯特林数
CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ ...
随机推荐
- Python_迭代器-生成器-复习-习题_41
# 迭代器和生成器# 迭代器 # 可迭代协议 —— 含有iter方法的都是可迭代的 # 迭代器协议 —— 含有next和iter的都是迭代器 # 特点 # 节省内存空间 # 方便逐个取值,一个迭代器只 ...
- Oja’s rule
目录 Oja's rule 背景 Hebbian learning 主要的一些理论 论文里面一些主要的假设 引理1 引理2 引理3 定理1 LEMMA 3(ALL) 引理 4 定理 2 定理 3(关于 ...
- siteServer创建网站中Mysql和SqlServer的区别
mysql中使用本地数据库时使用:localhost sqlserver使用本地数据库时使用:(local)
- 03-命令图片.doc
- 搭建RISC-V错误记录
错误:riscv64-unknown-elf-gcc: Command not found 解决办法:将riscv64-unknown-elf-gcc文件拷贝到根目录的/bin目录下. 原因是make ...
- css横线中间放图片或者文字
效果图: 先贴代码 HTML: <div class="forshow middle"> <div class="flex"></ ...
- Button按钮为什么无缘无故会提交form表单?
我的form表单里有好几个Button按钮,每个按钮有不同的功能,可是这些按钮居然都有提交功能,真是把我惊呆了 <button class="btn btn-info " o ...
- Flutter的输入框TextField
TextFiled组件的API 先来看一下TextFiled的构造方法: const TextField({ Key key, this.controller, this.focusNode, thi ...
- prop与attr
1.都是获取当前元素某个属性的值 2.当获取多选框的状态时,如果没有选中,此时没有checked属性,用attr获取得到undifien prop得到false. 3.html原生属性用prop获取, ...
- python之路--初识函数
一 . 函数 什么是函数 f(x) = x + 1 y = x + 1 # 函数是对功能或者动作的封装 函数的语法 def 函数名(): 函数体 调用: 函数名() def play(): print ...