已知数列$\{\dfrac{1}{n}\}$的前$n$项和为$S_n$,则下面选项正确的是(      )
A.$S_{2018}-1>\ln 2018$
B.$S_{2018}-1<\ln 2018$
C.$\ln2018<S_{1009}-1$
D.$\ln2018>S_{2017}$


分析:这里主要考察$\dfrac{x}{1+x}\le\ln(1+x)\le x$
令$x=\dfrac{1}{n}$累加易得$\dfrac{1}{2}+\dfrac{1}{3}\dots+\dfrac{1}{n+1}<\ln(n+1)<1+\dfrac{1}{2}+\dfrac{1}{3}\dots+\dfrac{1}{n}$
易得答案选B
练习:证明:当$n\in N^+$时$\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dots+\dfrac{1}{3n+1}<\dfrac{9}{8}$
提示:$\ln(1+x)\ge\dfrac{2x}{2+x}=\dfrac{1}{k}$

MT【299】对数型数列不等式的更多相关文章

  1. MT【25】切线不等式原理及例题

    评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.

  2. MT【322】绝对值不等式

    已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...

  3. MT【318】分式不等式双代换

    已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}$,求$\dfrac{1}{a-1}+\dfrac{4}{b-1}$的最小值. 解:令$m=\d ...

  4. MT【310】均值不等式

    (2014北约自主招生)已知正实数$x_1,x_2,\cdots,x_n$满足$x_1x_2\cdots x_n=1,$求证:$(\sqrt{2}+x_1)(\sqrt{2}+x_2)\cdots(\ ...

  5. MT【72】一个不等式

    证明: 评: 可以思考$\frac{1}{(1+b)^2}+\frac{1}{(1+a)^2}$与$\frac{2}{(1+\sqrt{ab})^2}$大小.

  6. MT【41】利用不等式妙消参数

    已知$\theta\in[0,2\pi]$对任意$x\in[0,1],2x^2sin\theta-4x(1-x)cos\theta+3(1-x)^2>0$恒成立.求$\theta$的范围. 解答 ...

  7. MT【19】舒尔不等式设计理念及证明

    评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.

  8. EXCEL某列长度超过255个字符导入SQL SERVER的处理方法

    问题描述: [Excel 源 [1]] 错误: 输出“Excel 源输出”(9) 上的 输出列“Description 3”(546) 出错.返回的列状态是:“文本被截断,或者一个或多个字符在目标代码 ...

  9. XVIII Open Cup named after E.V. Pankratiev. GP of Romania

    A. Balance 不难发现确定第一行第一列后即可确定全部,列不等式单纯形求解线性规划即可. #include<cstdio> #include<algorithm> usi ...

随机推荐

  1. c++入门之类继承初步

    继承是面向对象的一种很重要的特性,先来复习基类的基本知识: 先上一段代码: # ifndef TABLE00_H # define TABLE00_H # include "string&q ...

  2. echarts图片保存

    一.js: function updateChart(versionList,rateList) { option = { title: { text: '拖动频次' }, tooltip : { t ...

  3. 多线程系列之三:Immutable 模式

    一,什么是Immutable模式?immutable就是不变的,不发生改变的.Immutable模式中存在着确保实例状态不发生变化改变的类.这些实例不需要互斥处理.String就是一个Immutabl ...

  4. MySQL 主从同步遇到的问题及解决方案

    在做某个项目的时候,使用主从数据库,master负责update.delete.insert操作,而slave负责select操作. 情景1:发表文章与查看文章 可以认为这个项目是一个博客系统,这里就 ...

  5. jQuery学习(监听DOM加载)

    jQuery的extend方法 function njQuery() { } /* njQuery.extend = function (obj) { // 此时此刻的this就是njQuery这个类 ...

  6. TCP 握手和挥手图解(有限状态机)

    1.引言 TCP 这段看过好几遍,老是记不住,没办法找工作涉及到网络编程这块,各种问 TCP .今天好好整理一下握手和挥手过程.献给跟我一样忙碌,找工作的童鞋,欢迎大神批评指正. 2.TCP 的连接建 ...

  7. b,B,KB,MB,GB,TB,PB,EB,ZB,YB,BB,NB,DB的含义,之间的关系

    1bit=1位2进制信息 1B (byte 字节)1KB(Kilobyte 千字节)=2(10)B=1024B=2(10)B: 1MB(Megabyte 兆字节)=2(10)KB=1024KB=2(2 ...

  8. js原生实现div渐入渐出

    jq对渐入渐出进行封装,简单的使用连个方法就可以实现.fadeIn(),fadeOut();如果我们界面没有使用jq那么原生怎么实现呢? 我们讲解一下,这个原理.当我们要实现渐入的时候,首先是让隐藏的 ...

  9. mysql实现首字母从A-Z排序

    1.常规排序ASC DESC ASC 正序 DESC倒叙 -- 此处不用多讲 2.自定义排序 自定义排序是根据自己想要的特定字符串(数字)顺序进行排序.主要是使用函数 FIELD(str,str1,s ...

  10. 同一个机器 安装多个版本Chrome浏览器的方法

    1. Chrome 现在安装直接没有任何提示 就直接安装了 而且自动式 高版本覆盖低版本安装 不给你任何选择版本的机会. 2. 但是chrome 的安装是基于用户的 所以 同一个机器 使用不同的用户 ...