关于boost中enable_shared_from_this类的原理分析
首先要说明的一个问题是:如何安全地将this指针返回给调用者。一般来说,我们不能直接将this指针返回。想象这样的情况,该函数将this指针返回到外部某个变量保存,然后这个对象自身已经析构了,但外部变量并不知道,此时如果外部变量使用这个指针,就会使得程序崩溃。
使用智能指针shared_ptr看起来是个不错的解决方法。但问题是如何去使用它呢?我们来看如下代码:
#include <iostream>
#include <boost/shared_ptr.hpp>
class Test
{
public:
//析构函数
~Test() { std::cout << "Test Destructor." << std::endl; }
//获取指向当前对象的指针
boost::shared_ptr<Test> GetObject()
{
boost::shared_ptr<Test> pTest(this);
return pTest;
}
};
int main(int argc, char *argv[])
{
{
boost::shared_ptr<Test> p( new Test( ));
std::cout << "q.use_count(): " << q.use_count() << std::endl;
boost::shared_ptr<Test> q = p->GetObject();
}
return ;
}
运行后,程序输出:
Test Destructor.
q.use_count(): 1
Test Destructor.
可以看到,对象只构造了一次,但却析构了两次。并且在增加一个指向的时候,shared_ptr的计数并没有增加。也就是说,这个时候,p和q都认为自己是Test指针的唯一拥有者,这两个shared_ptr在计数为0的时候,都会调用一次Test对象的析构函数,所以会出问题。
那么为什么会这样呢?给一个shared_ptr<Test>传递一个this指针难道不能引起shared_ptr<Test>的计数吗?
答案是:对的,shared_ptr<Test>根本认不得你传进来的指针变量是不是之前已经传过。
看这样的代码:
int main()
{
Test* test = new Test();
shared_ptr<Test> p(test);
shared_ptr<Test> q(test);
std::cout << "p.use_count(): " << p.use_count() << std::endl;
std::cout << "q.use_count(): " << q.use_count() << std::endl;
return ;
}
运行后,程序输出:
p.use_count(): 1
q.use_count(): 1
Test Destructor.
Test Destructor.
也证明了刚刚的论述:shared_ptr<Test>根本认不得你传进来的指针变量是不是之前已经传过。
事实上,类对象是由外部函数通过某种机制分配的,而且一经分配立即交给 shared_ptr管理,而且以后凡是需要共享使用类对象的地方,必须使用这个 shared_ptr当作右值来构造产生或者拷贝产生(shared_ptr类中定义了赋值运算符函数和拷贝构造函数)另一个shared_ptr ,从而达到共享使用的目的。
解释了上述现象后,现在的问题就变为了:如何在类对象(Test)内部中获得一个指向当前对象的shared_ptr 对象?如果我们能够做到这一点,直接将这个shared_ptr对象返回,就不会造成新建的shared_ptr的问题了。
下面来看看enable_shared_from_this类的威力。
enable_shared_from_this 是一个以其派生类为模板类型参数的基类模板,继承它,派生类的this指针就能变成一个 shared_ptr。
有如下代码:
#include <iostream>
#include <boost/enable_shared_from_this.hpp>
#include <boost/shared_ptr.hpp>
class Test : public boost::enable_shared_from_this<Test> //改进1
{
public:
//析构函数
~Test() { std::cout << "Test Destructor." << std::endl; }
//获取指向当前对象的指针
boost::shared_ptr<Test> GetObject()
{
return shared_from_this(); //改进2
}
};
int main(int argc, char *argv[])
{
{
boost::shared_ptr<Test> p( new Test( ));
std::cout << "q.use_count(): " << q.use_count() << std::endl;
boost::shared_ptr<Test> q = p->GetObject();
}
return ;
}
运行后,程序输出:
Test Destructor.
q.use_count(): 2;
可以看到,问题解决了!
接着来看看enable_shared_from_this 是如何工作的,以下是它的源码:
template<class T> class enable_shared_from_this
{
protected: BOOST_CONSTEXPR enable_shared_from_this() BOOST_SP_NOEXCEPT
{
} BOOST_CONSTEXPR enable_shared_from_this(enable_shared_from_this const &) BOOST_SP_NOEXCEPT
{
} enable_shared_from_this & operator=(enable_shared_from_this const &) BOOST_SP_NOEXCEPT
{
return *this;
} ~enable_shared_from_this() BOOST_SP_NOEXCEPT // ~weak_ptr<T> newer throws, so this call also must not throw
{
} public: shared_ptr<T> shared_from_this()
{
shared_ptr<T> p( weak_this_ );
BOOST_ASSERT( p.get() == this );
return p;
} shared_ptr<T const> shared_from_this() const
{
shared_ptr<T const> p( weak_this_ );
BOOST_ASSERT( p.get() == this );
return p;
} weak_ptr<T> weak_from_this() BOOST_SP_NOEXCEPT
{
return weak_this_;
} weak_ptr<T const> weak_from_this() const BOOST_SP_NOEXCEPT
{
return weak_this_;
} public: // actually private, but avoids compiler template friendship issues // Note: invoked automatically by shared_ptr; do not call
template<class X, class Y> void _internal_accept_owner( shared_ptr<X> const * ppx, Y * py ) const BOOST_SP_NOEXCEPT
{
if( weak_this_.expired() )
{
weak_this_ = shared_ptr<T>( *ppx, py );
}
} private: mutable weak_ptr<T> weak_this_;
}; } // namespace boost #endif // #ifndef BOOST_SMART_PTR_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED
标黄部分是shared_from_this()函数的实现。可以看到,这个函数使用一个weak_ptr对象(weak_this_)来构造一个 shared_ptr对象,然后将shared_ptr对象返回。
注意这个weak_ptr是实例对象的一个成员变量,所以对于一个对象来说,它一直是同一个,每次在调用shared_from_this()时,就会根据weak_ptr来构造一个临时shared_ptr对象。
也许看到这里会产生疑问,这里的shared_ptr也是一个临时对象,和前面有什么区别?还有,为什么enable_shared_from_this 不直接保存一个 shared_ptr 成员?
对于第一个问题,这里的每一个shared_ptr都是根据weak_ptr来构造的,而每次构造shared_ptr的时候,使用的参数是一样的,所以这里根据相同的weak_ptr来构造多个临时shared_ptr等价于用一个shared_ptr来做拷贝。(PS:在shared_ptr类中,是有使用weak_ptr对象来构造shared_ptr对象的构造函数的:
template<class Y>
explicit shared_ptr( weak_ptr<Y> const & r ): pn( r.pn )
)
对于第二个问题,假设我在类里储存了一个指向自身的shared_ptr,那么这个 shared_ptr的计数最少都会是1,也就是说,这个对象将永远不能析构,所以这种做法是不可取的。
在enable_shared_from_this类中,没有看到给成员变量weak_this_初始化赋值的地方,那究竟是如何保证weak_this_拥有着Test类对象的指针呢?
首先我们生成类T时,会依次调用enable_shared_from_this类的构造函数(定义为protected),以及类Test的构造函数。在调用enable_shared_from_this的构造函数时,会初始化定义在enable_shared_from_this中的私有成员变量weak_this_(调用其默认构造函数),这时的weak_this_是无效的(或者说不指向任何对象)。
接着,当外部程序把指向类Test对象的指针作为初始化参数来初始化一个shared_ptr(boost::shared_ptr<Test> p( new Test( ));)。
现在来看看 shared_ptr是如何初始化的,shared_ptr 定义了如下构造函数:
template<class Y>
explicit shared_ptr( Y * p ): px( p ), pn( p )
{
boost::detail::sp_enable_shared_from_this( this, p, p );
}
里面调用了 boost::detail::sp_enable_shared_from_this :
template< class X, class Y, class T >
inline void sp_enable_shared_from_this( boost::shared_ptr<X> const * ppx,
Y const * py, boost::enable_shared_from_this< T > const * pe )
{
if( pe != )
{
pe->_internal_accept_owner( ppx, const_cast< Y* >( py ) );
}
}
里面又调用了enable_shared_from_this 的 _internal_accept_owner :
template<class X, class Y> void _internal_accept_owner( shared_ptr<X> const * ppx, Y * py ) const
{
if( weak_this_.expired() )
{
weak_this_ = shared_ptr<T>( *ppx, py );
}
}
而在这里,对enable_shared_from_this 类的成员weak_this_进行拷贝赋值,使得weak_this_作为类对象 shared_ptr 的一个观察者。
这时,当类对象本身需要自身的shared_ptr时,就可以从这个weak_ptr来生成一个了:
shared_ptr<T> shared_from_this()
{
shared_ptr<T> p( weak_this_ );
BOOST_ASSERT( p.get() == this );
return p;
}
以上。
从上面的说明来看,需要小心的是shared_from_this()仅在shared_ptr<T>的构造函数被调用之后才能使用,原因是enable_shared_from_this::weak_this_并不在构造函数中设置,而是在shared_ptr<T>的构造函数中设置。
所以,如下代码是错误的:
class D:public boost::enable_shared_from_this<D>
{
public:
D()
{
boost::shared_ptr<D> p=shared_from_this();
}
};
原因是在D的构造函数中虽然可以保证enable_shared_from_this<D>的构造函数被调用,但weak_this_是无效的(还还没被接管)。
如下代码也是错误的:
class D:public boost::enable_shared_from_this<D>
{
public:
void func()
{
boost::shared_ptr<D> p=shared_from_this();
}
};
void main()
{
D d;
d.func();
}
原因同上。
总结为:不要试图对一个没有被shared_ptr接管的类对象调用shared_from_this(),不然会产生未定义行为的错误。
参考:
Boost 库 Enable_shared_from_this 实现原理分析
如何用enable_shared_from_this 来得到指向自身的shared_ptr及对enable_shared_from_this 的理解
enable_shared_from_this模板类使用完全解析
关于boost中enable_shared_from_this类的原理分析的更多相关文章
- 【转载】Lua中实现类的原理
原文地址 http://wuzhiwei.net/lua_make_class/ 不错,将metatable讲的很透彻,我终于懂了. --------------------------------- ...
- Java中Atomic类的使用分析
1:为什么会出现Atomic类 在多线程或者并发环境中,我们常常会遇到这种情况 int i=0; i++ 稍有经验的同学都知道这种写法是线程不安全的.为了达到线程安全的目的,我们通常会用synchro ...
- boost库----enable_shared_from_this类的作用和实现原理
使用boost库时,经常会看到如下的类 class A:public enable_share_from_this<A> 在什么情况下要使类A继承enable_share_from_thi ...
- String类中intern方法的原理分析
一,前言 昨天简单整理了JVM内存分配和String类常用方法,遇到了String中的intern()方法.本来想一并总结起来,但是intern方法还涉及到JDK版本的问题,内容也相对较多,所以今 ...
- RxJava 中的Map函数原理分析
首先看一段Map函数的使用代码: Observable.create(new Observable.OnSubscribe<Integer>() { @Override public vo ...
- Android中线程间通信原理分析:Looper,MessageQueue,Handler
自问自答的两个问题 在我们去讨论Handler,Looper,MessageQueue的关系之前,我们需要先问两个问题: 1.这一套东西搞出来是为了解决什么问题呢? 2.如果让我们来解决这个问题该怎么 ...
- 并发包中automic类的原理
提到同步,我们一般首先想到的是lock,synchronized,但java中有一套更加轻量级的同步方式即atomic类.java的并发原子包里面提供了很多可以进行原子操作的类,比如: AtomicI ...
- TCP中ECN的工作原理分析二(摘自:RFC3168)
英文源:http://www.icir.org/floyd/ecn.html 发送端和接收端处理: The TCP Sender For a TCP connection using ECN, new ...
- Android中Input型输入设备驱动原理分析(一)
转自:http://blog.csdn.net/eilianlau/article/details/6969361 话说Android中Event输入设备驱动原理分析还不如说Linux输入子系统呢,反 ...
随机推荐
- parseFloat()为什么没有效果
parseFloat() 函数可解析一个字符串,并返回一个浮点数.看清楚说明是操作字符串,如果是数值类型parseFloat([],x)会失去效果. 正确的用法:parseFloat().toFixe ...
- HDU - 6393 Traffic Network in Numazu(树链剖分+基环树)
http://acm.hdu.edu.cn/showproblem.php?pid=6393 题意 给n个点和n条边的图,有两种操作,一种修改边权,另一种查询u到v的最短路. 分析 n个点和n条边,实 ...
- ASP.NET Identity V2简单介绍
Microsoft.AspNet.Identity是微软在MVC 5.0中新引入的一种membership框架,和之前ASP.NET传统的membership以及WebPage所带来的SimpleMe ...
- StringBuilder类
java.lang.StringBuilder String类代表字符串,他的底层是一个被final修饰的数组,不能改变,字符串是常量,它们的值一旦被创建之后就不能改变,但是字符串缓冲区(String ...
- jqweui Picker使用一个小问题
地址:http://jqweui.com/extends#picker加了Display Value后,会产生改变值后,Picker显示Value而不显示Text情况.需要在OnClose里做如下处理 ...
- C#子类重写父类函数的两种方法
(1)使用Virtual关键字Override从写 父类子类代码如下,不能修改public 为其它权限 public virtual void Clear() { UpdateView(); } pu ...
- JDK8新特性04 方法引用与构造器引用
import java.io.PrintStream; import java.util.Comparator; import java.util.function.*; /** * 一.方法引用 * ...
- 四十一、Linux 线程——线程同步之条件变量
41.1 概念 41.1.1 条件变量的介绍 互斥锁的缺点是它只有两种状态:锁定和非锁定 条件变量通过允许线程阻塞和等待另一个线程发送信号的方法弥补了互斥锁的不足 条件变量内部是一个等待队列,放置等待 ...
- oracle 利用over 查询数据和总条数,一条sql搞定
select count(*) over()总条数 ,a.*from table a
- 一个简单至极的PHP缓存类代码
https://www.jb51.net/article/73836.htm 直接看代码吧!使用说明:1.实例化$cache = new Cache(); 2.设置缓存时间和缓存目录$cache = ...