洛谷P4307 球队收益
题意:有n个球队,m场比赛。
每个球队都已经有些胜负场次了。
每个球队的收益为Ci * wini2 - Di * losei2。
求最小可能总收益。
解:
先看出一个模型:用一流量代表一个胜场,每场比赛向两支队伍连边。
然后我们发现这个费用是跟流量的平方有关的,How to do?
先观察一波:1 4 9 16 25
差分:1 3 5 7 9
然后我们就发现:如果把下面差分建成边的费用,限流为1,恰好就是收益了。
至此茅塞顿开。
首先假设所有的队伍都输了,然后每场选出一名胜者,C(2win + 1) - D(2lose - 1)为费用。
最小费用最大流即可。
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring> const int N = , M = ;
const int INF = 0x3f3f3f3f; struct Edge {
int nex, v;
int c, len;
}edge[M << ]; int top = ; int e[N], vis[N], pre[N];
int d[N], flow[N];
std::queue<int> Q;
int A[N], B[N], C[N], D[N], win[N], los[N], X[N], Y[N]; inline void add(int x, int y, int z, int w) {
//printf("add : %d %d \n", x, y);
top++;
edge[top].v = y;
edge[top].c = z;
edge[top].len = w;
edge[top].nex = e[x];
e[x] = top; top++;
edge[top].v = x;
edge[top].c = ;
edge[top].len = -w;
edge[top].nex = e[y];
e[y] = top;
return;
} inline bool SPFA(int s, int t) {
memset(d, 0x3f, sizeof(d));
d[s] = ;
flow[s] = INF;
vis[s] = ;
Q.push(s);
while(!Q.empty()) {
int x = Q.front();
Q.pop();
vis[x] = ;
//printf("x = %d d = %d\n", x, d[x]);
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(edge[i].c && d[y] > d[x] + edge[i].len) {
d[y] = d[x] + edge[i].len;
pre[y] = i;
flow[y] = std::min(flow[x], edge[i].c);
if(!vis[y]) {
vis[y] = ;
Q.push(y);
}
}
}
}
return d[t] < INF;
} inline void update(int s, int t) {
int temp = flow[t];
while(t != s) {
int i = pre[t];
edge[i].c -= temp;
edge[i ^ ].c += temp;
t = edge[i ^ ].v;
}
return;
} inline int solve(int s, int t, int &cost) {
int ans = ;
cost = ;
while(SPFA(s, t)) {
ans += flow[t];
cost += flow[t] * d[t];
update(s, t);
}
return ans;
} int main() {
int n, m, s, t, sum = ;
scanf("%d%d", &n, &m);
s = n + m + , t = m + n + ;
for(int i = ; i <= n; i++) {
scanf("%d%d%d%d", &win[i], &los[i], &C[i], &D[i]);
/*win[i] = A[i];
los[i] = B[i];*/
}
for(int i = ; i <= m; i++) {
scanf("%d%d", &X[i], &Y[i]);
add(s, n + i, , );
add(n + i, X[i], , );
add(n + i, Y[i], , );
los[X[i]]++;
los[Y[i]]++;
}
for(int i = ; i <= n; i++) {
sum += C[i] * win[i] * win[i];
sum += D[i] * los[i] * los[i];
}
for(int i = ; i <= m; i++) {
int x = X[i], y = Y[i];
add(x, t, , C[x] * ( * win[x] + ) - D[x] * ( * los[x] - ));
add(y, t, , C[y] * ( * win[y] + ) - D[y] * ( * los[y] - ));
win[x]++;
win[y]++;
los[x]--;
los[y]--;
} int ans;
solve(s, t, ans);
printf("%d", ans + sum);
return ;
}
AC代码
洛谷P4307 球队收益的更多相关文章
- 洛谷 P4307 [JSOI2009]球队收益 / 球队预算(最小费用最大流)
题面 luogu 题解 最小费用最大流 先假设剩下\(m\)场比赛,双方全输. 考虑\(i\)赢一局的贡献 \(C_i*(a_i+1)^2+D_i*(b_i-1)^2-C_i*a_i^2-D_i*b_ ...
- 洛谷 P2647 最大收益
我是题面 恩,贪心,鉴定完毕. 一个物品是否放进来,取决于它是否能对答案做出贡献. 那物品i的贡献就是\(w[i]-r[i]\) 可是收益的减少是会叠加的 那就是\(w[i]-j*r[i]\),j表示 ...
- 洛谷P2647 最大收益
P2647 最大收益 题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的 ...
- 洛谷—— P2647 最大收益
https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物 ...
- 洛谷 P2647 最大收益 题解
题面 对于“n个物品选任意个”我们就可以想到一种递推方法,即设f[i][j]表示前i个物品选j个的最大收益 我们发现正着转移并不好转移,我们可以倒着转移,使选择的当前第i号物品为第一个物品,这样的话我 ...
- 【洛谷P2647】最大收益
题目大意 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益:但是,你选择该物 ...
- 【BZOJ1449】[JSOI2009]球队收益(网络流,费用流)
[BZOJ1449][JSOI2009]球队收益(网络流,费用流) 题面 BZOJ 洛谷 题解 首先对于一支队伍而言,总共进行多少场比赛显然是已知的,假设是\(n_i\)场,那么它的贡献是:\(C_i ...
- 洛谷 P3410 拍照
洛谷 P3410 拍照 题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. ...
- 洛谷P4014 分配问题【最小/大费用流】题解+AC代码
洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...
随机推荐
- 【译】Six Open Source Dashboards to Organize Your Data
作者:Ben Gregory on Jun 29, 2016 译者:carsonzhu 在天文学家看来,我们相信每个组织都可以从数据的正确集中,组织和清理中受益. 我们正在建立一个公司来做到这一点 ...
- python爬虫scrapy之scrapy终端(Scrapy shell)
Scrapy终端是一个交互终端,供您在未启动spider的情况下尝试及调试您的爬取代码. 其本意是用来测试提取数据的代码,不过您可以将其作为正常的Python终端,在上面测试任何的Python代码. ...
- QTP自动化测试-按行取值(win10下输入?问题)-笔记20181119
在win10下运行qtp10 所有输入汉字都会为?,在win7下可以.查询了百度.bingo没有解决问题.当前的解决办法 ,在脚本中使用DataTable取数据值,添加2行记录,一行使用汉字,一行使用 ...
- LODOP打印安装到win的特殊字体
LODOP能够打印的字体,来源于安装到本机windows里字体库的字体,如果需要打印特别的字体,需要在该操作系统安装.由于web网站的用户千差万别,字体库也有不同,但是一般常见的字体都是有的,因此做模 ...
- nginx rewrite重写
通过官方文档可以看到,rewrite的作用上下文是 server location,可以写在 server里面 亦或location里面; 命令: if (条件) {} 条件判断 set #设置 ...
- Scss - 简单笔记
原文链接:scss 教程 手头上疯狂在用 scss,虽然可以在里面写原生的 css, 但是为了保持风格的一致性,还是滚去看了看 scss 文档. 一.变量 变量的引入是 scss 的一个核心特性,变量 ...
- JAVA web 使用有盟推送总结
仔细阅读文档,下边的都是废话. 为了省事,iOS和Android 提供了所有了参数,需要那个了修改传参. //ios actionURL为自定义参数 $.ajax({ type : "POS ...
- luogu3702-[SDOI2017]序列计数
Description Alice想要得到一个长度为nn的序列,序列中的数都是不超过mm的正整数,而且这nn个数的和是pp的倍数. Alice还希望,这nn个数中,至少有一个数是质数. Alice想知 ...
- 第四十天 并发编程之io模型
一.今日内容 1.网络IO的两个阶段 waitdata copydata 2阻塞IO模型 之前写的都是阻塞 无论多线程 多进程 还是 进程池 线程池 3.非阻塞IO模型 在非阻塞IO中 需要不断循环询 ...
- D. Flood Fill 区间DP 或lcs匹配
题意 给定一串数字 相同的连续的数字可以同时 转换成一个相同数字 问最小几次可以全部转换成一个相同的数字 法1:区间dp dp[l][r][0/1] 0表示l r区间转化成和最左边相同需要多少次 ...