有n个女性和n个男性。每个女性的如意郎君列表都是所有男性的一个子集,并且可能为空。如果列表非空,她们会在其中选择一个男性作为自己最终接受的对象。将“如意郎君列表”中的男性按照编号从小到大的顺序呈现给她。对于每次呈现,她将独立地以P的概率接受这个男性(换言之,会以1−P的概率拒绝这个男性)。如果她选择了拒绝,App就会呈现列表中下一个男性,以此类推。如果列表中所有的男性都已经呈现,那么会重新按照列表的顺序来呈现这些男性,直到她接受了某个男性为止。显然,在这种规则下,每个女性只能选择接受一个男性,而一个男性可能被多个女性所接受。当然,也可能有部分男性不被任何一个女性接受。这样,每个女性就有了自己接受的男性(“如意郎君列表”为空的除外)。现在考虑任意两个不同的、如意郎君列表非空的女性a和b,如果a的编号比b的编号小,而a选择的男性的编号比b选择的编号大,那么女性a和女性b就叫做一对不稳定因素。求得不稳定因素的期望个数(即平均数目)

Solution

此题要求期望的逆序对数,我们先分析每个男性在每个女性的选择中被选择的概率(图是网上抄来的)

等比数列求和一下

概率求出来了,我们就可以以男性编号为下标,维护一个树状数组,里面的值代表这个男性在前面出现的期望次数。

求出这个后,我们在乘上当前男性被选择的概率就可以成为答案的一部分。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#define N 500002
using namespace std;
typedef long double ld;
ld ans,tr[N],p;
int n,m;
struct zzh{
int x,y;
}a[N];
bool cmp(zzh a,zzh b){
if(a.x!=b.x)return a.x<b.x;
else return a.y<b.y;
}
void add(int x,ld y){while(x<=n)tr[x]+=y,x+=x&-x;}
double query(int x){double ans=;while(x)ans+=tr[x],x-=x&-x;return ans;}
int main(){
// freopen("4481.in","r",stdin);
// freopen("4481.out","w",stdout);
scanf("%d%d%Lf",&n,&m,&p);
for(int i=;i<=m;++i)scanf("%d%d",&a[i].x,&a[i].y);
sort(a+,a+m+,cmp);
int now=;
for(int i=now;i<=m;i=now+){
now=i;
while(a[now].x==a[now+].x)now++;
ld x=;
for(int j=i;j<=now;++j)x*=(-p);x=-x;
ld y=p;
for(int j=i;j<=now;++j){
ld xx=y/x;
add(n-a[j].y+,xx);
ans+=xx*query(n-a[j].y);
y*=(-p);
}
}
printf("%.2Lf",ans);
return ;
}

bzoj4481非诚勿扰(期望dp)的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. K8S、云计算、大数据、编程语言

    云计算.大数据.编程语言学习指南下载,100+技术课程免费学!这份诚意满满的新年技术大礼包,你Get了吗?-云栖社区-阿里云https://yq.aliyun.com/articles/691028 ...

  2. mysql之找回误删数据

    场景:我们开发阶段,经常要有一些测试数据在我们测试相关功能的时候,是十分必要的.后期由于引入了正式的数据,但是测试数据并没有被及时清理.这个时候由于一个误删除,导致一些正式的数据被删除,由此,一场追找 ...

  3. java随笔4 java中接参整形转字符串

    通过+‘’来实现

  4. Day 3-5 装饰器

    开放-封闭原则: 封闭:已实现的功能代码块不应该被修改. 开放:对现有功能的扩展开放. 装饰器: 定义:在符合'开放-封闭'的原则下,给程序扩展其他的功能! 例:在不更改tokyo函数的情况下.给to ...

  5. 【译】Six Open Source Dashboards to Organize Your Data

    作者:Ben Gregory on Jun 29, 2016   译者:carsonzhu 在天文学家看来,我们相信每个组织都可以从数据的正确集中,组织和清理中受益. 我们正在建立一个公司来做到这一点 ...

  6. 你不知道的JavaScript——第一章:作用域是什么?

    编译原理 JavaScript事实上是一门编译语言,但与传统的编译语言不同,它不是提前编译的,编译结果也不能在分布式系统中进行移植. 任何JavaScript代码片段在执行前都要进行编译(通常就在执行 ...

  7. AssemblyScript的测试

    详细文档介绍 export function f(x: i32): i32 { if (x === 1 || x === 2) { return 1; } return f(x - 1) + f(x ...

  8. edge

    https://www.cnblogs.com/st-leslie/p/6784990.html

  9. python 计算机基础

    1.什么是编程语言. 语言是一个事物与另一个事物沟通的介质. 编程语言是程序员与计算机沟通的介质. 2.什么是编程. 编程是人按照某种语法规范设计出计算机能够识别的语言 表达的结果是程序,程序就是一系 ...

  10. 三星 SCX-4521NS 网络打印机 在XP 下 强行 设置 安装

    添加打印机加上之后,图标是半虚的,状态脱机,网上找了很多方法都不好使. 包括官方的:http://www.samsung.com/cn/support/skp/faq/442292 然后死马当活马医, ...