light1370 欧拉函数打表
/*
给定n个数ai,要求欧拉函数值大于ai的最小的数bi
求sum{bi}
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 1000005
int n,a[maxn]; int phi[maxn],m,v[maxn],prime[maxn];
void init(int n){
memset(v,,sizeof v);
m=;
for(int i=;i<n;i++){
if(v[i]==){//i是质数
v[i]=i,prime[++m]=i;
phi[i]=i-;
}
for(int j=;j<=m;j++){
if(prime[j]>v[i] || prime[j]*i>n)break;
v[i*prime[j]]=prime[j];//筛素数
phi[i*prime[j]]=phi[i]*(i%prime[j]?prime[j]-:
prime[j]);
}
}
}
/*int phi[maxn];
void init(int n){//用era筛的思路O(nlogn)复杂度
phi[1]=1;
for(int i=2;i<=n;i++)phi[i]=i;
for(int i=2;i<=n;i++)
if(phi[i]==i)//i是质数
for(int j=1;i*j<=n;j++)
phi[i*j]=phi[i*j]/i*(i-1);
}*/
int main(){
int t,tt;
init(maxn);
cin>>t;
for(tt=;tt<=t;tt++){
cin>>n;
for(int i=;i<=n;i++)cin>>a[i];
sort(a+,a++n); int j=;
long long ans=;
for(int i=;i<maxn;i++){
while(phi[i]>=a[j] && j<=n)
ans+=i,j++;
}
printf("Case %d: %lld Xukha\n",tt,ans);
}
}
light1370 欧拉函数打表的更多相关文章
- A - Bi-shoe and Phi-shoe (欧拉函数打表)
Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a ver ...
- hdu 2824 The Euler function 欧拉函数打表
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)
Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...
- POJ 2478 欧拉函数打表的运用
http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- LightOJ - 1370 Bi-shoe and Phi-shoe (欧拉函数打表)
题意:给N个数,求对每个数ai都满足最小的phi[x]>=ai的x之和. 分析:先预处理出每个数的欧拉函数值phi[x].对于每个数ai对应的最小x值,既可以二分逼近求出,也可以预处理打表求. ...
- 杭电多校第十场 hdu6434 Count 欧拉函数打表 快速打表模板
Problem I. Count Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Other ...
- AcWing 201. 可见的点 (欧拉函数打表)打卡
在一个平面直角坐标系的第一象限内,如果一个点(x,y)与原点(0,0)的连线中没有通过其他任何点,则称该点在原点处是可见的. 例如,点(4,2)就是不可见的,因为它与原点的连线会通过点(2,1). 部 ...
- HDU 2824 简单欧拉函数
1.HDU 2824 The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a ...
随机推荐
- STL之partition学习
顺便存一下numeric函数的使用方法吧,感觉用处不大. https://blog.csdn.net/baishuo8/article/details/84073565 partition函数,将元素 ...
- linux 文件搜索命令
- thymeleaf资源加载问题(从Controller跳转)
<!DOCTYPE html> <html xmlns:th="http://www.thymeleaf.org"> <head> <me ...
- spring aop 加在Controller层造成类初始化两遍
写一个测试项目,在配置动态数据源的时候采用的AOP切面到Controller层中,根据参数判断是否切合数据源,结果发现,每次Controller层的类都会初始化两次! 后来测试发现,把切面放到Serv ...
- QR二维码原理(一)
一.什么是QR码 QR码属于矩阵式二维码中的一个种类,由DENSO(日本电装)公司开发,由JIS和ISO将其标准化.QR码的样子其实在很多场合已经能够被看到了,我这还是贴个图展示一下: 这个图如果被正 ...
- Path Sum I && II & III
Path Sum I Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that ad ...
- Python3-socket网络知识储备
本文参考文章:http://www.cnblogs.com/linhaifeng/articles/6129246.html 计算机基础知识 客户端软件基于网络发送一条信息给服务端软件,流程是: 1. ...
- 如何操控DevExpress的 SpreadSheet 控件 并与 XAF 结合应用
DevExpress的XAF 框架通常使用 GridControl 控件来操作数据库表中的数据,但导入导出.非结构化数据的管理可以使用SpreadSheet 控件. SpreadSheet 控件模拟微 ...
- Liunx之xl2TP的一键搭建
作者:邓聪聪 1 L2TP(Layer 2 Tunnel Protocol二层隧道协议l),上图说明了VPN的一些特点,出差员工或者外出员工通过拨特定号码的方式接入到企业内部网络; --------- ...
- BZOJ 3620: 似乎在梦中见过的样子
似乎在梦中见过的样子.... 一道水题调了这么久,还半天想不出来怎么 T 的...佩服自己(果然蒟蒻) 这题想想 KMP 但是半天没思路瞟了一眼题解发现暴力枚举起始点,然后 KMP 如图: O( n2 ...