GCD HDU - 1695 (欧拉 + 容斥)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17385 Accepted Submission(s): 6699
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
1 3 1 5 1
1 11014 1 14409 9
Case 2: 736427
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int ans;
LL tot[maxn + ];
int prime[maxn+], phi[maxn+];
bool vis[maxn+];
void getphi()
{
ans = ;
phi[] = ;
for(int i=; i<=maxn; i++)
{
if(!vis[i])
{
prime[++ans] = i;
phi[i] = i - ;
}
for(int j=; j<=ans; j++)
{
if(i * prime[j] > maxn) break;
vis[i * prime[j]] = ;
if(i % prime[j] == )
{ phi[i * prime[j]] = phi[i] * prime[j]; break;
}
else
phi[i * prime[j]] = phi[i] * (prime[j] - );
}
}
} int get_cnt(int n, int m)
{
int ans = ;
for(int i = ; i * i <= n; i++)
{
if(n % i) continue;
while(n % i == ) n /= i;
prime[ans++] = i;
}
if(n != ) prime[ans++] = n;
int res = ;
for(int i = ; i < ( << ans); i++)
{
int tmp = , cnt2 = ;
for(int j = ; j < ans; j++)
{
if(((i >> j) & ) == ) continue;
tmp *= prime[j];
cnt2++;
}
if(cnt2 & ) res += m / tmp;
else res -= m / tmp;
}
return m - res;
} int main()
{
getphi();
int a, b, c, d, k;
for(int i = ; i < maxn; i++)
{
tot[i] = tot[i - ] + phi[i]; }
int T, kase = ;
cin >> T;
while(T--)
{
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if(k == )
{
printf("Case %d: 0\n", ++kase);
continue;
}
int n = b / k, m = d / k;
LL sum = tot[n > m ? m : n];
// cout << sum << endl;
if(m > n) swap(n, m);
for(int i =m + ; i <= n; i++)
{
sum += get_cnt(i, m);
}
printf("Case %d: %lld\n", ++kase, sum);
} return ;
}
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17385 Accepted Submission(s): 6699
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
1 3 1 5 1
1 11014 1 14409 9
Case 2: 736427
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
GCD HDU - 1695 (欧拉 + 容斥)的更多相关文章
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- HDU 4135 Co-prime 欧拉+容斥定理
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 1695 欧拉函数+容斥原理
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion
http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...
- GCD nyoj 1007 (欧拉函数+欧几里得)
GCD nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 The greatest common divisor ...
- HDU 3970 Harmonious Set 容斥欧拉函数
pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n 求连续整数[0,n), 中随意选一些数使得选出的 ...
- HDU 1695 GCD (容斥原理+欧拉函数)
题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...
- HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...
- HDU 4135 Co-prime(容斥:二进制解法)题解
题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...
随机推荐
- position fixed 相对于父级定位
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- H5 29-div和span标签
29-div和span标签 --> 努力到无能为力, 拼搏到感动自己 --> 我是div 我是div 我是span 我是span --> --> 我是段落 我是标题 --> ...
- hdu 2063 给男女匹配 (匈牙利算法)
来源:http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意: 有k个组合a,b组合,代表a愿意与b坐过山车,共m个女生 n个男生,问有多少个满意的匹配 题 ...
- Telnet服务器和客户端请求处理
Telnet服务器和客户端请求处理 本文的控制台项目是根据SuperSocket官方Telnet示例代码进行调试的,官方示例代码:Telnet示例. 开始我的第一个Telnet控制台项目之旅: 创建控 ...
- java总结:Java中获取系统时间(年、月、日)以及下拉菜单默认选择系统年、月、日的方法
<!-- 获取系统当前的年.月.日 --> <%@ page import="java.util.*"%> <% Calendar calendar= ...
- Git分支合并:Merge、Rebase的选择
git代码合并:Merge.Rebase的选择 - iTech - 博客园http://www.cnblogs.com/itech/p/5188932.html Git如何将一个分支的修改同步到另一个 ...
- redis 运维手册
redis cli命令 - milkty - 博客园https://www.cnblogs.com/kongzhongqijing/p/6867960.html Redis多个数据库 - EasonJ ...
- [翻译]在asp.net core2.0 OpenID Connect Handler中丢失了声明(CLaims)?
注:这是一篇翻译,来自这里.这篇文章讲述了在asp.net core2.0中使用openid connect handler的过程中解析不到你想要的claim时,你可以参考这篇文章. Missing ...
- scp复制文件到远程服务器上
scp -P 22 -r 2028792_www root@120.79.172.45:/usr/local/src Linux scp命令用于Linux之间复制文件和目录. scp是 secure ...
- laravel创建项目
composer create-project --prefer-dist laravel/laravel=5.5.* blog