# 所有节点的g值并没有初始化为无穷大
# 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed
# 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径
# 最后closed表中的节点很多,如何找出最优的一条路径
# 撞墙之后产生较多的节点会加入closed表,此时开始删除closed表中不合理的节点,1.1版本的思路
# 1.2版本思路,建立每一个节点的方向指针,指向f值最小的上个节点
# 参考《无人驾驶概论》、《基于A*算法的移动机器人路径规划》王淼驰,《人工智能及应用》鲁斌 import numpy
from pylab import *
import copy # 定义一个含有障碍物的20×20的栅格地图
# 10表示可通行点
# 0表示障碍物
# 7表示起点
# 5表示终点
map_grid = numpy.full((20, 20), int(10), dtype=numpy.int8)
map_grid[3, 3:8] = 0
map_grid[3:10, 7] = 0
map_grid[10, 3:8] = 0
map_grid[17, 13:17] = 0
map_grid[10:17, 13] = 0
map_grid[10, 13:17] = 0
map_grid[5, 2] = 7
map_grid[15, 15] = 5 class AStar(object):
"""
创建一个A*算法类
""" def __init__(self):
"""
初始化
"""
# self.g = 0 # g初始化为0
self.start = numpy.array([5, 2]) # 起点坐标
self.goal = numpy.array([15, 15]) # 终点坐标
self.open = numpy.array([[], [], [], [], [], []]) # 先创建一个空的open表, 记录坐标,方向,g值,f值
self.closed = numpy.array([[], [], [], [], [], []]) # 先创建一个空的closed表
self.best_path_array = numpy.array([[], []]) # 回溯路径表 def h_value_tem(self, son_p):
"""
计算拓展节点和终点的h值
:param son_p:子搜索节点坐标
:return:
"""
h = (son_p[0] - self.goal[0]) ** 2 + (son_p[1] - self.goal[1]) ** 2
h = numpy.sqrt(h) # 计算h
return h # def g_value_tem(self, son_p, father_p):
# """
# 计算拓展节点和父节点的g值
# 其实也可以直接用1或者1.414代替
# :param son_p:子节点坐标
# :param father_p:父节点坐标,也就是self.current_point
# :return:返回子节点到父节点的g值,但不是全局g值
# """
# g1 = father_p[0] - son_p[0]
# g2 = father_p[1] - son_p[1]
# g = g1 ** 2 + g2 ** 2
# g = numpy.sqrt(g)
# return g def g_accumulation(self, son_point, father_point):
"""
累计的g值
:return:
"""
g1 = father_point[0] - son_point[0]
g2 = father_point[1] - son_point[1]
g = g1 ** 2 + g2 ** 2
g = numpy.sqrt(g) + father_point[4] # 加上累计的g值
return g def f_value_tem(self, son_p, father_p):
"""
求出的是临时g值和h值加上累计g值得到全局f值
:param father_p: 父节点坐标
:param son_p: 子节点坐标
:return:f
"""
f = self.g_accumulation(son_p, father_p) + self.h_value_tem(son_p)
return f def child_point(self, x):
"""
拓展的子节点坐标
:param x: 父节点坐标
:return: 子节点存入open表,返回值是每一次拓展出的子节点数目,用于撞墙判断
当搜索的节点撞墙后,如果不加处理,会陷入死循环
"""
# 开始遍历周围8个节点
for j in range(-1, 2, 1):
for q in range(-1, 2, 1): if j == 0 and q == 0: # 搜索到父节点去掉
continue
m = [x[0] + j, x[1] + q]
print(m)
if m[0] < 0 or m[0] > 19 or m[1] < 0 or m[1] > 19: # 搜索点出了边界去掉
continue if map_grid[int(m[0]), int(m[1])] == 0: # 搜索到障碍物去掉
continue record_g = self.g_accumulation(m, x)
record_f = self.f_value_tem(m, x) # 计算每一个节点的f值 x_direction, y_direction = self.direction(x, m) # 每产生一个子节点,记录一次方向 para = [m[0], m[1], x_direction, y_direction, record_g, record_f] # 将参数汇总一下
print(para) # 在open表中,则去掉搜索点,但是需要更新方向指针和self.g值
# 而且只需要计算并更新self.g即可,此时建立一个比较g值的函数
a, index = self.judge_location(m, self.open)
if a == 1:
# 说明open中已经存在这个点 if record_f <= self.open[5][index]:
self.open[5][index] = record_f
self.open[4][index] = record_g
self.open[3][index] = y_direction
self.open[2][index] = x_direction continue # 在closed表中,则去掉搜索点
b, index2 = self.judge_location(m, self.closed)
if b == 1: if record_f <= self.closed[5][index2]:
self.closed[5][index2] = record_f
self.closed[4][index2] = record_g
self.closed[3][index2] = y_direction
self.closed[2][index2] = x_direction
self.closed = numpy.delete(self.closed, index2, axis=1)
self.open = numpy.c_[self.open, para]
continue self.open = numpy.c_[self.open, para] # 参数添加到open中
print(self.open) def judge_location(self, m, list_co):
"""
判断拓展点是否在open表或者closed表中
:return:返回判断是否存在,和如果存在,那么存在的位置索引
"""
jud = 0
index = 0
for i in range(list_co.shape[1]): if m[0] == list_co[0, i] and m[1] == list_co[1, i]: jud = jud + 1 index = i
break
else:
jud = jud
# if a != 0:
# continue
return jud, index def direction(self, father_point, son_point):
"""
建立每一个节点的方向,便于在closed表中选出最佳路径
非常重要的一步,不然画出的图像参考1.1版本
x记录子节点和父节点的x轴变化
y记录子节点和父节点的y轴变化
如(0,1)表示子节点在父节点的方向上变化0和1
:return:
"""
x = son_point[0] - father_point[0]
y = son_point[1] - father_point[1]
return x, y def path_backtrace(self):
"""
回溯closed表中的最短路径
:return:
"""
best_path = [15, 15] # 回溯路径的初始化
self.best_path_array = numpy.array([[15], [15]])
j = 0
while j <= self.closed.shape[1]:
for i in range(self.closed.shape[1]):
if best_path[0] == self.closed[0][i] and best_path[1] == self.closed[1][i]:
x = self.closed[0][i]-self.closed[2][i]
y = self.closed[1][i]-self.closed[3][i]
best_path = [x, y]
self.best_path_array = numpy.c_[self.best_path_array, best_path]
break # 如果已经找到,退出本轮循环,减少耗时
else:
continue
j = j+1
# return best_path_array def main(self):
"""
main函数
:return:
"""
best = self.start # 起点放入当前点,作为父节点
h0 = self.h_value_tem(best)
init_open = [best[0], best[1], 0, 0, 0, h0] # 将方向初始化为(0,0),g_init=0,f值初始化h0
self.open = numpy.column_stack((self.open, init_open)) # 起点放入open,open初始化 ite = 1 # 设置迭代次数小于200,防止程序出错无限循环
while ite <= 1000: # open列表为空,退出
if self.open.shape[1] == 0:
print('没有搜索到路径!')
return self.open = self.open.T[numpy.lexsort(self.open)].T # open表中最后一行排序(联合排序) # 选取open表中最小f值的节点作为best,放入closed表 best = self.open[:, 0]
print('检验第%s次当前点坐标*******************' % ite)
print(best)
self.closed = numpy.c_[self.closed, best] if best[0] == 15 and best[1] == 15: # 如果best是目标点,退出
print('搜索成功!')
return self.child_point(best) # 生成子节点并判断数目
print(self.open)
self.open = numpy.delete(self.open, 0, axis=1) # 删除open中最优点 # print(self.open) ite = ite+1 class MAP(object):
"""
画出地图
"""
def draw_init_map(self):
"""
画出起点终点图
:return:
"""
plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
# plt.colorbar()
xlim(-1, 20) # 设置x轴范围
ylim(-1, 20) # 设置y轴范围
my_x_ticks = numpy.arange(0, 20, 1)
my_y_ticks = numpy.arange(0, 20, 1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
plt.grid(True)
# plt.show() def draw_path_open(self, a):
"""
画出open表中的坐标点图
:return:
"""
map_open = copy.deepcopy(map_grid)
for i in range(a.closed.shape[1]):
x = a.closed[:, i] map_open[int(x[0]), int(x[1])] = 1 plt.imshow(map_open, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
# plt.colorbar()
xlim(-1, 20) # 设置x轴范围
ylim(-1, 20) # 设置y轴范围
my_x_ticks = numpy.arange(0, 20, 1)
my_y_ticks = numpy.arange(0, 20, 1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
plt.grid(True)
# plt.show() def draw_path_closed(self, a):
"""
画出closed表中的坐标点图
:return:
"""
print('打印closed长度:')
print(a.closed.shape[1])
map_closed = copy.deepcopy(map_grid)
for i in range(a.closed.shape[1]):
x = a.closed[:, i] map_closed[int(x[0]), int(x[1])] = 5 plt.imshow(map_closed, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
# plt.colorbar()
xlim(-1, 20) # 设置x轴范围
ylim(-1, 20) # 设置y轴范围
my_x_ticks = numpy.arange(0, 20, 1)
my_y_ticks = numpy.arange(0, 20, 1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
plt.grid(True)
# plt.show() def draw_direction_point(self, a):
"""
从终点开始,根据记录的方向信息,画出搜索的路径图
:return:
"""
print('打印direction长度:')
print(a.best_path_array.shape[1])
map_direction = copy.deepcopy(map_grid)
for i in range(a.best_path_array.shape[1]):
x = a.best_path_array[:, i] map_direction[int(x[0]), int(x[1])] = 6 plt.imshow(map_direction, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
# plt.colorbar()
xlim(-1, 20) # 设置x轴范围
ylim(-1, 20) # 设置y轴范围
my_x_ticks = numpy.arange(0, 20, 1)
my_y_ticks = numpy.arange(0, 20, 1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
plt.grid(True) def draw_three_axes(self, a):
"""
将三张图画在一个figure中
:return:
"""
plt.figure()
ax1 = plt.subplot(221) ax2 = plt.subplot(222)
ax3 = plt.subplot(223)
ax4 = plt.subplot(224)
plt.sca(ax1)
self.draw_init_map()
plt.sca(ax2)
self.draw_path_open(a)
plt.sca(ax3)
self.draw_path_closed(a)
plt.sca(ax4)
self.draw_direction_point(a) plt.show() if __name__ == '__main__': a1 = AStar()
a1.main()
a1.path_backtrace()
m1 = MAP()
m1.draw_three_axes(a1)

A*算法基于栅格地图的全局路径规划

[python] A*算法基于栅格地图的全局路径规划的更多相关文章

  1. 全局路径规划算法Dijkstra(迪杰斯特拉算法)- matlab

    参考博客链接:https://www.cnblogs.com/kex1n/p/4178782.html Dijkstra是常用的全局路径规划算法,其本质上是一个最短路径寻优算法.算法的详细介绍参考上述 ...

  2. ROS源码解读(二)--全局路径规划

    博客转载自:https://blog.csdn.net/xmy306538517/article/details/79032324 ROS中,机器人全局路径规划默认使用的是navfn包 ,move_b ...

  3. customizable route planning 工业界地图产品的路径规划

    https://www.microsoft.com/en-us/research/publication/customizable-route-planning/?from=http%3A%2F%2F ...

  4. move_base的全局路径规划代码研究

    algorithmn parameter code 主要是以下三个函数 计算所有的可行点 怎么计算一个点的可行点 从可行点中计算路径path todo algorithmn 算法的解释 Dijkstr ...

  5. 利用Matlab快速绘制栅格地图

    代码演示 % 基于栅格地图的机器人路径规划算法 % 第1节:利用Matlab快速绘制栅格地图 clc clear close all %% 构建颜色MAP图 cmap = [1 1 1; ... % ...

  6. ROS机器人路径规划介绍--全局规划

    ROS机器人路径规划算法主要包括2个部分:1)全局路径规划算法:2)局部路径规划算法: 一.全局路径规划 global planner ROS 的navigation官方功能包提供了三种全局路径规划器 ...

  7. DWA局部路径规划算法论文阅读:The Dynamic Window Approach to Collision Avoidance。

    DWA(动态窗口)算法是用于局部路径规划的算法,已经在ROS中实现,在move_base堆栈中:http://wiki.ros.org/dwa_local_planner DWA算法第一次提出应该是1 ...

  8. 【路径规划】 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame (附python代码实例)

    参考与前言 2010年,论文 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame 地址:https ...

  9. 如何用HMS Core位置和地图服务实现附近地点路径规划功能

    日常出行中,路径规划是很重要的部分.用户想要去往某个地点,获取到该地点的所有路径,再根据预估出行时间自行选择合适的路线,极大方便出行.平时生活中也存在大量使用场景,在出行类App中,根据乘客的目的地可 ...

随机推荐

  1. 4.4 explain 之 possible_keys 、key、key_len

    一.possible_keys 显示可能应用在这张表中的索引,一个或多个. 查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询实际使用. 二.key 实际使用的索引.如果为null,则没有 ...

  2. JavaAndroid项目配置文件笔记

    配置文件AndroidManifest.xml如下: <?xml version="1.0" encoding="utf-8"?> <!-- ...

  3. JavaScript解析机制与闭包原理实例详解

    js代码解析机制: js代码解析之前会创建一个如下的词法环境对象(仓库):LexicalEnvironment{ } 在扫描js代码时会把: 1.用声明的方式创建的函数的名字; 2.用var定义的变量 ...

  4. Dynamics 365 Online-Unified User Interface

    为了加强界面的一致性,提高用户体验,Dynamics 365 Online V9发布了新的Interface:Unified User Interface. 区别于旧的Regular UI,UUI自适 ...

  5. java设计模式之模板模式以及钩子方法使用

    1.使用背景 模板方法模式是通过把不变行为搬到超类,去除子类里面的重复代码提现它的优势,它提供了一个很好的代码复用平台.当不可变和可变的方法在子类中混合在一起的时候, 不变的方法就会在子类中多次出现, ...

  6. 性能测试 CentOS下结合InfluxDB及Grafana图表实时展示JMeter相关性能数据

    CentOS下结合InfluxDB及Grafana图表实时展示JMeter相关性能数据   by:授客 QQ:1033553122 实现功能 1 测试环境 1 环境搭建 2 1.安装influxdb ...

  7. css文本超出隐藏显示省略号

    p style="width: 300px;overflow: hidden;white-space: nowrap;text-overflow: ellipsis;"> 如 ...

  8. socket和http的区别

    1.HTTP连接 HTTP协议即超文本传送协议(Hypertext Transfer Protocol ),是Web联网的基础,也是手机联网常用的协议之一,HTTP协议是建立在TCP协议之上的一种应用 ...

  9. listview 异步加载图片并防止错位

    1.图片错位原理: 如果我们只是简单显示list中数据,而没用convertview的复用机制和异步操作,就不会产生图片错位:重用convertview但没用异步,也不会有错位现象.但我们的项目中li ...

  10. DAY3(PYTHON)

    一.or 和and的区别 X OR Y,如果X非0,则为X X OR Y,如果X为真,则为Y 二.continue 跳出当次循环 break 跳出循环 三.#输出1-2+3-4+5-6+......- ...