4.4Python数据处理篇之Matplotlib系列(四)---plt.bar()与plt.barh条形图
目录
前言
今天我们学习的是条形图,导入的函数是:
plt.bar() 于 plt.barh
(一)竖值条形图
(1)说明:
原函数定义:
bar
(x, height, width=0.8, bottom=None, ***, align='center', data=None, **kwargs)
常见的参数属性
具体参考:官网说明文档
参数 | 说明 | 类型 |
---|---|---|
x | x坐标 | int,float |
height | 条形的高度 | int,float |
width | 宽度 | 0~1,默认0.8 |
botton | 条形的起始位置 | 也是y轴的起始坐标 |
align | 条形的中心位置 | “center”,"lege"边缘 |
color | 条形的颜色 | “r","b","g","#123465",默认“b" |
edgecolor | 边框的颜色 | 同上 |
linewidth | 边框的宽度 | 像素,默认无,int |
tick_label | 下标的标签 | 可以是元组类型的字符组合 |
log | y轴使用科学计算法表示 | bool |
orientation | 是竖直条还是水平条 | 竖直:"vertical",水平条:"horizontal" |
(2)源代码:
"""
默认的是竖值条形图
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
# 将全局的字体设置为黑体
matplotlib.rcParams['font.family'] = 'SimHei'
# 数据
N = 5
y = [20, 10, 30, 25, 15]
x = np.arange(N)
# 绘图 x x轴, height 高度, 默认:color="blue", width=0.8
p1 = plt.bar(x, height=y, width=0.5, )
# 展示图形
plt.show()
(3)输出效果:
(二)水平条形图
1.使用bar()绘制:
(1)说明
需要把:orientation="horizontal",然后x,与y的数据交换,再添加bottom=x,即可。
(2)源代码:
"""
水平条形图,需要修改以下属性
orientation="horizontal"
"""
import numpy as np
import matplotlib.pyplot as plt
# 数据
N = 5
x = [20, 10, 30, 25, 15]
y = np.arange(N)
# 绘图 x= 起始位置, bottom= 水平条的底部(左侧), y轴, height 水平条的宽度, width 水平条的长度
p1 = plt.bar(x=0, bottom=y, height=0.5, width=x, orientation="horizontal")
# 展示图形
plt.show()
(3)输出效果:
2.使用barh()绘制:
具体可参考:官网说明文档
(1)说明
使用barh()时,bottom改为left, 然后宽变高,高变宽。
(2)源代码:
"""
水平条形图,需要以下属性
orientation="horizontal"
"""
import numpy as np
import matplotlib.pyplot as plt
# 数据
N = 5
x = [20, 10, 30, 25, 15]
y = np.arange(N)
# 绘图 y= y轴, left= 水平条的底部, height 水平条的宽度, width 水平条的长度
p1 = plt.barh(y, left=0, height=0.5, width=x)
# 展示图形
plt.show()
(3)输出效果:
[图片上传失败...(image-c414f2-1552186154190)]
(三)复杂的条形图
1.并列条形图:
(1)说明
我们再同一张画布,画两组条形图,并且紧挨着就时并列条形图。
改变x的位置。
(2)源代码:
import numpy as np
import matplotlib.pyplot as plt
# 数据
x = np.arange(4)
Bj = [52, 55, 63, 53]
Sh = [44, 66, 55, 41]
bar_width = 0.3
# 绘图 x 表示 从那里开始
plt.bar(x, Bj, bar_width)
plt.bar(x+bar_width, Sh, bar_width, align="center")
# 展示图片
plt.show()
(3)输出效果:
2.叠加条形图:
(1)说明
两组条形图是处与同一个x处,并且y是连接起来的。
(2)源代码:
import numpy as np
import matplotlib.pyplot as plt
# 数据
x = np.arange(4)
Bj = [52, 55, 63, 53]
Sh = [44, 66, 55, 41]
bar_width = 0.3
# 绘图
plt.bar(x, Bj, bar_width)
plt.bar(x, Sh, bar_width, bottom=Bj)
# 展示图片
plt.show()
(3)输出效果:
3.添加图例于数据标签的条形图:
(1)说明
- 对于图例:
先可选属性里添加label=“”,标签
再使用plt.lengd()显示。
- 对于数据的标签
使用任意方向的标签来标注,再由x,y数据确定坐标。
- tick_label=str,用来显示自定义坐标轴
(2)源代码:
"""
默认的是竖值条形图
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
# 将全局的字体设置为黑体
matplotlib.rcParams['font.family'] = 'SimHei'
# 数据
N = 5
y = [20, 10, 30, 25, 15]
x = np.arange(N)
# 添加地名坐标
str1 = ("北京", "上海", "武汉", "深圳", "重庆")
# 绘图 x x轴, height 高度, 默认:color="blue", width=0.8
p1 = plt.bar(x, height=y, width=0.5, label="城市指标", tick_label=str1)
# 添加数据标签
for a, b in zip(x, y):
plt.text(a, b + 0.05, '%.0f' % b, ha='center', va='bottom', fontsize=10)
# 添加图例
plt.legend()
# 展示图形
plt.show()
(3)输出效果:
作者:Mark
日期:2019/02/12 周二
4.4Python数据处理篇之Matplotlib系列(四)---plt.bar()与plt.barh条形图的更多相关文章
- 5.4Python数据处理篇之Sympy系列(四)---微积分
目录 目录 前言 (一)求导数-diff() 1.一阶求导-diff() 2.多阶求导-diff() 3.求偏导数-diff() (二)求积分-integrate() (三)求极限-limit() ( ...
- 3.4Python数据处理篇之Numpy系列(四)---ndarray 数组的运算
目录 目录 (一)数组与标量的运算 1.说明: 2.实例: (二)元素级的运算(一元函数) 1.说明: 2.实例: (三)数组级的运算(二元函数) 1.说明: 2.实例: 目录 1.数组与标量的运算 ...
- 4.11Python数据处理篇之Matplotlib系列(十一)---图例,网格,背景的设置
目录 目录 前言 (一)图例legend 1.默认不带参数的图例 2.添加参数的图例 3.将图例移动到框外 (二)网格grid 1.说明 2.源代码: 3.输出效果 (三)背景axses 1.设置全局 ...
- 4.10Python数据处理篇之Matplotlib系列(十)---文本的显示
目录 目录 前言 (一)中文显示 ==1.全局的设置== ==2.局部的设置== (二)文本显示 目录 前言 今天我们来学习一下文本的显示 (一)中文显示 ==1.全局的设置== (1)说明: 在ma ...
- 4.9Python数据处理篇之Matplotlib系列(九)---子图分布
目录 目录 前言 (一)subplot()方法 ==1.语法说明== ==2.源代码== ==3.输出效果== (二)subplot2grid方法 ==1.语法说明== ==2.源代码== ==3.展 ...
- 4.7Python数据处理篇之Matplotlib系列(七)---matplotlib原理分析
目录 目录 前言 (一)总框架分析 (二)函数式的绘图 1.说明: 2.函数绘图的缺优点 3.绘图类的函数 4.操作类的函数 5.例子: (三)面向对象式的绘图 1.基本概念 2.基本对象 3.面向对 ...
- 4.5Python数据处理篇之Matplotlib系列(五)---plt.pie()饼状图
目录 目录 前言 (一)简单的饼状图 (二)添加阴影和突出部分 (三)显示图例和数据标签: 目录 前言 饼状图需要导入的是: plt.pie(x, labels= ) (一)简单的饼状图 (1)说明: ...
- 4.2Python数据处理篇之Matplotlib系列(二)---plt.scatter()散点图
目录 目录 前言 (一)散点图的基础知识 (二)相关性的举例 ==1.正相关== ==1.负相关== ==1.不相关== (三)实战项目以一股票的分析 目录 前言 散点图是用于观测数据的相关性的,有正 ...
- 4.14Python数据处理篇之Matplotlib系列(十四)---动态图的绘制
目录 目录 前言 (一)需求分析 (二)随机数的动态图 1.思路分析: 2.源代码: 2.输出效果: 目录 前言 学习matplotlib已经到了尾声,没有必要再继续深究下去了,现今只是学了一些基础的 ...
随机推荐
- Netty 粘包 & 拆包 & 编码 & 解码 & 序列化 介绍
目录: 粘包 & 拆包及解决方案 ByteToMessageDecoder 基于长度编解码器 基于分割符的编解码器 google 的 Protobuf 序列化介绍 其他的 前言 Netty 作 ...
- [React] immutable.js
//Map() 原生object转Map对象 (只会转换第一层,注意和fromJS区别) immutable.Map({name:'danny', age:18}) //List() 原生array转 ...
- 在.net中怎么解析json串 [Error reading JObject from JsonReader. Current JsonReader item is not an obj]
编辑时间:2017-05-10,增加一种转化list的方法 一.以前知道一种解析json串的方法,觉得有点麻烦.就从别的地方搜到了另一种 string json = vlt.getlist(); JO ...
- 谈谈知识的融会贯通:以“java中的迭代器失效问题”为例
提示 文中涉及知识点: Collection . Iterator Guava 中的 Lists.partition 方法 如果你对这两个知识点不了解,强烈建议阅读文中引用的参考文章. 场景一:以Ar ...
- 【Java每日一题】20170214
20170213问题解析请点击今日问题下方的“[Java每日一题]20170214”查看(问题解析在公众号首发,公众号ID:weknow619) package Feb2017; public cla ...
- Eclipse中SVN插件的安装和配置(离线安装)
Eclipse利用svn的离线安装包进行配置svn,这种方式配置起来很简单,但是前提是必须下载可用的的svn离线包.因为有的从网上下载的svn离线包有问题. 第一步:下载svn离线包 我下载的是下面这 ...
- 7.通用程序设计_EJ
第45条: 将局部变量的作用域最小化 该条目与第13条(使类和成员的可访问性最小)本质上是类似的.要使局部变量的作用域最小化,最有利的方法就是在第一次使用它的地方声明.在每个局部变量的声明处都应该包含 ...
- JVM-String.intern()
故事起源于书籍<深入理解Java虚拟机>,案例如下: public class RunTimeConstantPoolOOM { public static void main(Strin ...
- JavaScript开发工具大全
译者按: 最全的JavaScript开发工具列表,总有一款适合你! 原文: THE ULTIMATE LIST OF JAVASCRIPT TOOLS 译者: Fundebug 为了保证可读性,本文采 ...
- form表单基础知识
form 元素是块级元素 ------------------- ------------------- ----------------------------------------------- ...