题目链接:https://pintia.cn/problem-sets/1108548596745592832/problems/1108548661014913033

题目大意:

这仍然是一道关于A/B的题,只不过A和B都换成了多项式。你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数。

输入格式:

输入分两行,每行给出一个非零多项式,先给出A,再给出B。每行的格式如下:

N e[1] c[1] ... e[N] c[N]

其中N是该多项式非零项的个数,e[i]是第i个非零项的指数,c[i]是第i个非零项的系数。各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系数是非零整数,所有整数在整型范围内。

输出格式:

分两行先后输出商和余,输出格式与输入格式相同,输出的系数保留小数点后1位。同行数字间以1个空格分隔,行首尾不得有多余空格。注意:零多项式是一个特殊多项式,对应输出为0 0 0.0。但非零多项式不能输出零系数(包括舍入后为0.0)的项。在样例中,余多项式其实有常数项-1/27,但因其舍入后为0.0,故不输出。

具体思路:模拟多项式除法,注意精度控制。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn = 1e5+;
double a[maxn],b[maxn],c[maxn];
int main()
{
int n,m,tmp,maxa,maxb;
scanf("%d",&n);
for(int i=; i<n; i++)
{
scanf("%d",&tmp);
scanf("%lf",&a[tmp]);
if(i==)
maxa=tmp;
}
scanf("%d",&m);
for(int i=; i<m; i++)
{
scanf("%d",&tmp);
scanf("%lf",&b[tmp]);
if(i==)
maxb=tmp;
}
int j;
for(int i=maxa; i>=maxb; i--)
{
c[i-maxb]=a[i]/b[maxb];
for( j=maxb; j>=; j--)
{
a[i+j-maxb]-=b[j]*c[i-maxb];
}
}
int num1=,num2=;
for(int i=maxa-maxb; i>=; i--)
{
if(fabs(c[i])>1e-)
{
if(fabs(c[i])<0.05)
c[i]=;
else
num1++;
}
}
if(num1==)
{
printf("0 0 0.0\n");
}
else
{
printf("%d",num1);
for(int i=maxa-maxb; i>=; i--)
{
if(fabs(c[i])>1e-)
printf(" %d %.1lf",i,c[i]);
}
printf("\n");
}
for(int i=maxb-; i>=; i--)
{
if(fabs(a[i])>1e-)
{
// cout<<a[i]<<endl;
if(fabs(a[i])<0.05)
a[i]=;
else
num2++;
}
}
if(num2==)
{
printf("0 0 0.0\n");
}
else
{
printf("%d",num2);
for(int i=maxb-; i>=; i--)
{
if(fabs(a[i])>1e-)
printf(" %d %.1lf",i,a[i]);
}
printf("\n");
}
}

7-10 多项式A除以B (25 分)的更多相关文章

  1. 7-10 多项式A除以B (25分)(多项式除法)

    7-10 多项式A除以B (25分)   这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出 ...

  2. 9.9递归和动态规划(八)——给定数量不限的硬币,币值为25分,10分,5分,1分,计算n分有几种表示法

    /**  * 功能:给定数量不限的硬币.币值为25分,10分.5分.1分,计算n分有几种表示法. */ public static int makeChange(int n){ return make ...

  3. 1009 Product of Polynomials (25分) 多项式乘法

    1009 Product of Polynomials (25分)   This time, you are supposed to find A×B where A and B are two po ...

  4. 多项式A除以B

    这个问题我是在PAT大区赛题里遇见的.题目如下: 多项式A除以B(25 分) 这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数 ...

  5. 1009 Product of Polynomials (25 分)

    1009 Product of Polynomials (25 分) This time, you are supposed to find A×B where A and B are two pol ...

  6. PAT 甲级 1009 Product of Polynomials (25)(25 分)(坑比较多,a可能很大,a也有可能是负数,回头再看看)

    1009 Product of Polynomials (25)(25 分) This time, you are supposed to find A*B where A and B are two ...

  7. PAT甲级 1002 A+B for Polynomials (25)(25 分)

    1002 A+B for Polynomials (25)(25 分) This time, you are supposed to find A+B where A and B are two po ...

  8. A1082 Read Number in Chinese (25)(25 分)

    A1082 Read Number in Chinese (25)(25 分) Given an integer with no more than 9 digits, you are suppose ...

  9. A1009 Product of Polynomials (25)(25 分)

    A1009 Product of Polynomials (25)(25 分) This time, you are supposed to find A*B where A and B are tw ...

  10. PAT 甲级 1145 Hashing - Average Search Time (25 分)(读不懂题,也没听说过平方探测法解决哈希冲突。。。感觉题目也有点问题)

    1145 Hashing - Average Search Time (25 分)   The task of this problem is simple: insert a sequence of ...

随机推荐

  1. 斯坦福大学公开课机器学习: advice for applying machine learning | deciding what to try next(revisited)(针对高偏差、高方差问题的解决方法以及隐藏层数的选择)

    针对高偏差.高方差问题的解决方法: 1.解决高方差问题的方案:增大训练样本量.缩小特征量.增大lambda值 2.解决高偏差问题的方案:增大特征量.增加多项式特征(比如x1*x2,x1的平方等等).减 ...

  2. 安卓手机root

    https://jingyan.baidu.com/article/ca41422ffe6b031eae99ed9a.html

  3. 前端模块化,AMD与CMD的区别

    最近在研究cmd和amd,在网上看到一篇不错的文章,整理下看看. 在JavaScript发展初期就是为了实现简单的页面交互逻辑,寥寥数语即可:如今CPU.浏览器性能得到了极大的提升,很多页面逻辑迁移到 ...

  4. Tree Restoration Gym - 101755F (并查集)

    There is a tree of n vertices. For each vertex a list of all its successors is known (not only direc ...

  5. 桌面面板和内部窗体JDeskPane、JInternalFrame

    桌面面板和内部窗体JDeskPane.JInternalFrame,内部窗体必须在桌面面板里. import javax.swing.*; import java.awt.*; public clas ...

  6. mysql 存储过程中文乱码的解决方法

    CREATE PROCEDURE `PROC_FOOBAR`(id INTEGER) BEGIN DECLARE code, user_id VARCHAR(32) CHARACTER SET utf ...

  7. 【Mac进销存管理软件】Daily Sales Pro Mac

        [简介] Daily Sales Mac版是Mac平台上的一款进销存软件,库存管理系统.Daily Sales Mac版是一款易于使用的进出库存管理软件,让您及时了解库存状况.销售收入.采购成 ...

  8. git lg 使用 转

    命令: git config --global alias.lg "log --color --graph --pretty=format:'%Cred%h%Creset -%C(yello ...

  9. 面向对象【林老师版】:特性(property)(十六)

    一.什么是特性property property是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值 例一:BMI指数(bmi是计算而来的,但很明显它听起来像是一个属性而非方法,如果我们将其做成 ...

  10. JAVA核心技术I---JAVA基础知识(异常处理类)

    一:异常分类 Throwable:所有错误的祖先. Error:系统内部错误或者资源耗尽.不用我们管 Exception: 程序有关的异常.重点关注 –RuntimeException: 程序自身的错 ...