import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
import sympy def plot_direction_field(x, y_x, f_xy, x_lim=(-5, 5), y_lim=(-5, 5), ax=None):
f_np = sympy.lambdify((x, y_x), f_xy, 'numpy')
x_vec = np.linspace(x_lim[0], x_lim[1], 20)
y_vec = np.linspace(y_lim[0], y_lim[1], 20) if ax is None:
_, ax = plt.subplots(figsize=(4, 4))
# dx相邻两值的距离
dx = x_vec[1] - x_vec[0]
dy = y_vec[1] - y_vec[0] for m, xx in enumerate(x_vec):
for n, yy in enumerate(y_vec):
Dy = f_np(xx, yy) * dx
Dx = 0.8 * dx ** 2 / np.sqrt(dx ** 2 + Dy ** 2)
Dy = 0.8 * Dy * dy / np.sqrt(dx ** 2 + Dy ** 2)
ax.plot([xx - Dx / 2, xx + Dx / 2], [yy - Dy / 2, yy + Dy / 2], 'b', lw=0.5) ax.axis('tight')
# y对x的偏导=f_xy
ax.set_title(r"$%s$" % (sympy.latex(sympy.Eq(y_x.diff(x), f_xy))), fontsize=18) return ax # 自变量
x = sympy.symbols('x')
# 因变量
y = sympy.Function('y')
f = x - y(x) ** 2 f_np = sympy.lambdify((y(x), x), f)
y0 = 1
xp = np.linspace(0, 5, 100)
# func 初始值 x的范围
yp = integrate.odeint(f_np, y0, xp)
xn = np.linspace(0, -5, 100)
yn = integrate.odeint(f_np, y0, xn) # 画场线图
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
plot_direction_field(x, y(x), f, ax=ax)
ax.plot(xn, yn, 'b', lw=2)
ax.plot(xp, yp, 'r', lw=2)
plt.show()

from sympy import *
x = symbols("x")
y = symbols("y",cls=Function)
eq1 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)
eq2 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)-x*exp(2*x)
res = dsolve(eq1,y(x))
res2 = dsolve(eq2, y(x))
print(res)
print(res2)
Eq(y(x), (C1 + C2*exp(x))*exp(2*x))
Eq(y(x), (C1 + C2*exp(x) - x**2/2 - x)*exp(2*x))

from sympy import *
x = symbols("x")
y = symbols("y",cls=Function)

eq1 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)
eq2 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)-x*exp(2*x)

res1 = dsolve(eq1,y(x),ics={y(0):1,diff(y(x),x).subs(x,0):0})
res2 = dsolve(eq2,y(x),ics={y(0):1,y(2):0})
print(res1)
print(res2)
Eq(y(x), (3 - 2*exp(x))*exp(2*x))
Eq(y(x), (-x**2/2 - x + 3*exp(x)/(-1 + exp(2)) + (-4 + exp(2))/(-1 + exp(2)))*exp(2*x))

 

基于python的数学建模---场线与数值解(微分方程)的更多相关文章

  1. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  2. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  3. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

  4. Python小白的数学建模课-15.图论基本概念

    图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...

  5. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  6. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  7. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  8. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  9. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  10. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

随机推荐

  1. KingbaseES R6 集群禁用 root ssh 后需要修改集群为es_server 案例

    案例说明: 在生产环境下,由于安全需要,主机间不允许建立root用户的ssh信任连接,这样导致KingbaseES R6 repmgr集群,通过sys_monitor.sh脚本启动集群时,节点之间不能 ...

  2. angr原理与实践(二)—— 各类图的生成(CFG CG ACFG DDG等)

    ​  本文系原创,转载请说明出处 Please Subscribe Wechat Official Account:信安科研人,获取更多的原创安全资讯 上一篇文章介绍了angr的原理,自此篇文章开始, ...

  3. 华南理工大学 Python第3章课后小测-1

    1.(单选)给出如下代码 s = 'Hello scut' print(s[::-1]) 上述代码的输出结果是(本题分数:4)A) HelloB) Hello scutC) olleH tucsD)  ...

  4. 华南理工大学 Python第2章课后小测-2

    1.(单选)下列符号中,有()个是Python的关键字.(1)if    (2)lambda  (3)not   (4) For   (5)None(6)from  (7)True   (8)fina ...

  5. 跨语言调用C#代码的新方式-DllExport

    简介 上一篇文章使用C#编写一个.NET分析器文章发布以后,很多小伙伴都对最新的NativeAOT函数导出比较感兴趣,今天故写一篇短文来介绍一下如何使用它. 在以前,如果有其他语言需要调用C#编写的库 ...

  6. pod(一):Kubernetes(k8s)创建pod的两种方式

    目录 一.系统环境 二.前言 三.pod 四.创建pod 4.1 环境介绍 4.2 使用命令行的方式创建pod 4.2.1 创建最简单的pod 4.2.2 创建pod,指定镜像下载策略 4.2.3 创 ...

  7. Containerd 知识点

    1.查看安装Containerd的版本 # ctr --version ctr github.com/containerd/containerd v1.6.6 # ctr version Client ...

  8. Fluentd 简明教程

    转载自:https://mp.weixin.qq.com/s?__biz=MzU4MjQ0MTU4Ng==&mid=2247491814&idx=1&sn=3b0f1a3477 ...

  9. 高光谱图像分类简述+《Deep Learning for Hyperspectral Image Classification: An Overview》综述论文笔记

    论文题目<Deep Learning for Hyperspectral Image Classification: An Overview> 论文作者:Shutao Li, Weiwei ...

  10. C++自学笔记 头文件 (header file)关于 #include 和.h

    头文件 在C++中定义Definition一个类的时候 要用分别的.h和.cpp文件去定义这个类 .h和.cpp成对出现 类的声明declaration和函数原型放在头文件里(.h) 定义这些函数的结 ...