11 绘图实例(3) Drawing example(3)(代码下载)

本文主要讲述seaborn官网相关函数绘图实例。具体内容有:

  1. Plotting a diagonal correlation matrix(heatmap)
  2. Scatterplot with marginal ticks(JointGrid)
  3. Multiple bivariate KDE plots(kdeplot)
  4. Multiple linear regression(lmplot)
  5. Paired density and scatterplot matrix(PairGrid)
  6. Paired categorical plots(PairGrid)
  7. Dot plot with several variables(PairGrid)
  8. Plotting a three-way ANOVA(catplot)
  9. Linear regression with marginal distributions(jointplot)
  10. Plotting model residuals(residplot)
# import packages
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

1. Plotting a diagonal correlation matrix(heatmap)

# 读取字母表
from string import ascii_letters # Generate a large random dataset 生成数据集
rs = np.random.RandomState(33)
d = pd.DataFrame(data=rs.normal(size=(100, 26)),
columns=list(ascii_letters[26:])) # Compute the correlation matrix 计算相关系数
corr = d.corr() # Generate a mask for the upper triangle 生成掩模
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True d# Set up the matplotlib figure 设置图大小
f, ax = plt.subplots(figsize=(11, 9)) # Generate a custom diverging colormap 设置颜色
cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio
# square表都是正方形
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5});

2. Scatterplot with marginal ticks(JointGrid)

sns.set(style="white", color_codes=True)

# Generate a random bivariate dataset
rs = np.random.RandomState(9)
mean = [0, 0]
cov = [(1, 0), (0, 2)]
x, y = rs.multivariate_normal(mean, cov, 100).T # Use JointGrid directly to draw a custom plot
# 创建一个绘图表格区域,设置好x,y对应数据
grid = sns.JointGrid(x, y, space=0, height=6, ratio=50)
# 在联合分布上画出散点图
grid.plot_joint(plt.scatter, color="g")
# 在边缘分布上再作图
grid.plot_marginals(sns.rugplot, height=1, color="g");
C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\tight_layout.py:199: UserWarning: Tight layout not applied. tight_layout cannot make axes width small enough to accommodate all axes decorations
warnings.warn('Tight layout not applied. '

3. Multiple bivariate KDE plots(kdeplot)

sns.set(style="darkgrid")
iris = sns.load_dataset("iris") # Subset the iris dataset by species
# 单独筛选对应类的数据
setosa = iris.query("species == 'setosa'")
virginica = iris.query("species == 'virginica'") # Set up the figure
f, ax = plt.subplots(figsize=(8, 8))
# 设置轴的缩放比例,equal表示x,y轴同等缩放比例
ax.set_aspect("equal") # Draw the two density plots
# 画核密度图
# shade表示添加阴影,shade_lowest表示两个核密度图相叠时,核密度小的部分不画出来
ax = sns.kdeplot(setosa.sepal_width, setosa.sepal_length,
cmap="Reds", shade=True, shade_lowest=False)
ax = sns.kdeplot(virginica.sepal_width, virginica.sepal_length,
cmap="Blues", shade=True, shade_lowest=False) # Add labels to the plot
# 添加颜色
red = sns.color_palette("Reds")[-2]
blue = sns.color_palette("Blues")[-2]
ax.text(2.5, 8.2, "virginica", size=16, color=blue)
ax.text(3.8, 4.5, "setosa", size=16, color=red);
C:\ProgramData\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

4. Multiple linear regression(lmplot)

# Load the iris dataset 读取数据
iris = sns.load_dataset("iris") # Plot sepal with as a function of sepal_length across days
# 画散点图,lmplot默认参数,以hue设定不同种类
# truncate为true表示现植回归拟合曲线绘图时只画出有数据的部分
g = sns.lmplot(x="sepal_length", y="sepal_width", hue="species",
truncate=True, height=5, data=iris); # Use more informative axis labels than are provided by default
# 设置横竖坐标轴label
g.set_axis_labels("Sepal length (mm)", "Sepal width (mm)");

5. Paired density and scatterplot matrix(PairGrid)

sns.set(style="white")

df = sns.load_dataset("iris")
# 制作散点图矩阵
# diag_sharey是否共享y轴
g = sns.PairGrid(df, diag_sharey=False)
# 下三角绘多变量核密度图
g.map_lower(sns.kdeplot)
# 上三角绘散点图
g.map_upper(sns.scatterplot)
# 对角线绘单变量核密度图,lw表示线条粗细
g.map_diag(sns.kdeplot, lw=3);

6. Paired categorical plots(PairGrid)

sns.set(style="whitegrid")

# Load the example Titanic dataset
titanic = sns.load_dataset("titanic") # Set up a grid to plot survival probability against several variables
# 制作散点图矩阵
# y轴为survived值,x_vars设定x轴
g = sns.PairGrid(titanic, y_vars="survived",
x_vars=["class", "sex", "who", "alone"],
height=5, aspect=.5)
# Draw a seaborn pointplot onto each Axes
# 制作折线图, errwidth表示上下标准注的长度,其中各点代表平均值
g.map(sns.pointplot, scale=1.3, errwidth=4, color="xkcd:plum")
g.set(ylim=(0, 1))
sns.despine(fig=g.fig, left=True);

7. Dot plot with several variables(PairGrid)

sns.set(style="whitegrid")

# Load the dataset
crashes = sns.load_dataset("car_crashes") # Make the PairGrid
# 按crash排序的值绘图,x_vars,y_vars表示x轴或者y轴
g = sns.PairGrid(crashes.sort_values("total", ascending=False),
x_vars=crashes.columns[:-3], y_vars=["abbrev"],
height=10, aspect=.25)
# Draw a dot plot using the stripplot function
g.map(sns.stripplot, size=10, orient="h",
palette="ch:s=1,r=-.1,h=1_r", linewidth=1, edgecolor="w")
# Use the same x axis limits on all columns and add better labels
# 设置x轴,x标签
g.set(xlim=(0, 25), xlabel="Crashes", ylabel="") # Use semantically meaningful titles for the columns
titles = ["Total crashes", "Speeding crashes", "Alcohol crashes",
"Not distracted crashes", "No previous crashes"] #去除轴线
for ax, title in zip(g.axes.flat, titles): # Set a different title for each axes
ax.set(title=title) # Make the grid horizontal instead of vertical
ax.xaxis.grid(False)
ax.yaxis.grid(True) sns.despine(left=True, bottom=True);

8. Plotting a three-way ANOVA(catplot)

# Load the example exercise dataset
df = sns.load_dataset("exercise") # Draw a pointplot to show pulse as a function of three categorical factors
# 分类型数据作坐标轴画图catplot,
# col表示用什么变量对图像在横坐标方向分列
# hue表示在单个维度上用某个变量区分;
# capsize表示延伸线的长度
g = sns.catplot(x="time", y="pulse", hue="kind", col="diet",
capsize=0.2, palette="YlGnBu_d", height=6, aspect=.75,
kind="point", data=df)
g.despine(left=True);

9. Linear regression with marginal distributions(jointplot)

sns.set(style="darkgrid")

tips = sns.load_dataset("tips")
# 设置联合图像,类型是"reg"回归图
g = sns.jointplot("total_bill", "tip", data=tips, kind="reg",
xlim=(0, 60), ylim=(0, 12), color="m", height=7)

10. Plotting model residuals(residplot)

sns.set(style="whitegrid")

# Make an example dataset with y ~ x
rs = np.random.RandomState(7)
x = rs.normal(2, 1, 75)
y = 2 + 1.5 * x + rs.normal(0, 2, 75) # Plot the residuals after fitting a linear model 残差图
# 中间曲线为残差曲线((对比一阶拟合直线的残差)),lowess曲线平滑
sns.residplot(x, y, lowess=True, color="g");

[seaborn] seaborn学习笔记11-绘图实例(3) Drawing example(3)的更多相关文章

  1. [seaborn] seaborn学习笔记12-绘图实例(4) Drawing example(4)

    文章目录 12 绘图实例(4) Drawing example(4) 1. Scatterplot with varying point sizes and hues(relplot) 2. Scat ...

  2. [seaborn] seaborn学习笔记10-绘图实例(2) Drawing example(2)

    文章目录 10 绘图实例(2) Drawing example(2) 1. Grouped violinplots with split violins(violinplot) 2. Annotate ...

  3. [seaborn] seaborn学习笔记9-绘图实例(1) Drawing example(1)

    文章目录 9 绘图实例(1) Drawing example(1) 1. Anscombe's quartet(lmplot) 2. Color palette choices(barplot) 3. ...

  4. 并发编程学习笔记(11)----FutureTask的使用及实现

    1. Future的使用 Future模式解决的问题是.在实际的运用场景中,可能某一个任务执行起来非常耗时,如果我们线程一直等着该任务执行完成再去执行其他的代码,就会损耗很大的性能,而Future接口 ...

  5. SpringMVC:学习笔记(11)——依赖注入与@Autowired

    SpringMVC:学习笔记(11)——依赖注入与@Autowired 使用@Autowired 从Spring2.5开始,它引入了一种全新的依赖注入方式,即通过@Autowired注解.这个注解允许 ...

  6. Spring 源码学习笔记11——Spring事务

    Spring 源码学习笔记11--Spring事务 Spring事务是基于Spring Aop的扩展 AOP的知识参见<Spring 源码学习笔记10--Spring AOP> 图片参考了 ...

  7. Ext.Net学习笔记11:Ext.Net GridPanel的用法

    Ext.Net学习笔记11:Ext.Net GridPanel的用法 GridPanel是用来显示数据的表格,与ASP.NET中的GridView类似. GridPanel用法 直接看代码: < ...

  8. SQL反模式学习笔记11 限定列的有效值

    目标:限定列的有效值,将一列的有效字段值约束在一个固定的集合中.类似于数据字典. 反模式:在列定义上指定可选值 1. 对某一列定义一个检查约束项,这个约束不允许往列中插入或者更新任何会导致约束失败的值 ...

  9. golang学习笔记11 golang要用jetbrain的golang这个IDE工具开发才好

    golang学习笔记11   golang要用jetbrain的golang这个IDE工具开发才好  jetbrain家的全套ide都很好用,一定要dark背景风格才装B   从File-->s ...

随机推荐

  1. Java注解(4):一个真实的Elasticsearch案例

    昨天把拼了一半的注解+Elasticsearch积木放下了,因为东西太多了拼不好,还容易乱.休息了一晚上接着来. 接着昨天,创建elasticsearch文档注解(相当于数据表的注解): /** * ...

  2. 开源动态可监控线程池DynamicTp介绍

    前言 使用线程池 ThreadPoolExecutor 过程中你是否有以下痛点呢? 代码中创建了一个 ThreadPoolExecutor,但是不知道那几个核心参数设置多少比较合适 凭经验设置参数值, ...

  3. Dapr v1.9.0 版本已发布

    Dapr是一套开源.可移植的事件驱动型运行时,允许开发人员轻松立足云端与边缘位置运行弹性.微服务.无状态以及有状态等应用程序类型.Dapr能够确保开发人员专注于编写业务逻辑,而不必分神于解决分布式系统 ...

  4. ElasticSearch之Windows中环境安装

    ElasticSearch 说明 本章,我们主要以在 Windows 中对ElasticSearch 安装进行介绍! 1. 下载 ElasticSearch 这里我们下载的版本为7.17.4为例进行介 ...

  5. 7.Gitee导入其他远程托管中心仓库

    的码云是开源中国推出的基于Git的代码托管服务中心 网址是https://gitee.com/,使用方式跟github一致,并且是一个中文网站 码云的使用配置方式与github一致,码云支持导入git ...

  6. 1.-Django项目结构

    一.Django简介 Django是一个开放源代码的Web应用框架,由Python写成.采用了MTV的框架模式,即模型M,视图V和模版T.   Django基本组件: 1.基本配置文件/路由系统 2. ...

  7. JavaScript基础复盘补缺

    语法规范 JavaScript严格区分大小写,对空格.换行.缩进不敏感,建议语句结束加':' JavaScript 会忽略多个空格.您可以向脚本添加空格,以增强可读性. JavaScript 程序员倾 ...

  8. 网页状态码(HTTP状态码)。

    网页状态码(HTTP状态码). 状态码 说明 详情 100 继续 请求者应当继续提出请求.服务器已收到请求的一部分,正在等待其余部分. 101 切换协议 请求者已要求服务器切换协议,服务器已确认并准备 ...

  9. Excel常用需求

    常用数据统计格式 外列表套内列表 [['name1','age1'],['name2','age2'],['name3','age3']] 外列表套内字典 [{'name':'xie','score' ...

  10. for in 和 for of 的区别和v-for指令的三种使用方法

    for...in 循环:只能获得对象的键名,不能获得键值 for...of 循环:允许遍历获得键值 var arr = ['red', 'green', 'blue'] for(let item in ...