LuoguP1516 青蛙的约会 (Exgcd)
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); (a) <= (c); ++(a))
#define nR(a,b,c) for(register int a = (b); (a) >= (c); --(a))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define ON_DEBUGG
#ifdef ON_DEBUGG
#define D_e_Line printf("\n----------\n")
#define D_e(x) cout << (#x) << " : " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
using namespace std;
struct ios{
template<typename ATP>inline ios& operator >> (ATP &x){
x = 0; int f = 1; char ch;
for(ch = getchar(); ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ '0'), ch = getchar();
x *= f;
return *this;
}
}io;
#define int long long
inline int Gcd(int a, int b){
while(b ^= a ^= b ^= a %= b);
return a;
// if(!b) return a;
// return Gcd(b, a % b);
}
inline void Exgcd(int a, int b, int &x, int &y){
if(!b)
x = 1, y = 0;
else
Exgcd(b, a % b, y, x), y -= x * (a / b);
}
#undef int
int main(){
#define int long long
int a, b, m, n, L;
io >> a >> b >> m >> n >> L;
int A = n - m, B = L, C = a - b;
if(A < 0){
A = -A, C = -C;
}
int r = Gcd(A, B);
if(C % r){
printf("Impossible");
return 0;
}
A /= r, B /= r, C /= r;
//D_e(B);
int x, y;
Exgcd(A, B, x, y);
// cout << x * C << endl;
// cout << x * C % B << endl;
// cout << x * C % B + B << endl;
printf("%lld", (x * C % B + B) % B);
return 0;
}
/*
(n - m) * x + L * y = a - b
A = n - m
B = L
C = A - B
*/
LuoguP1516 青蛙的约会 (Exgcd)的更多相关文章
- POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]
先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...
- POJ1061 青蛙的约会 exgcd
这个题虽然很简单,但是有一个比较坑的地方,就是gcd不一定是1,有可能是别的数.所以不能return 1,而是return a; 题干: Description 两只青蛙在网上相识了,它们聊得很开心, ...
- LuoGuP1516 青蛙的约会 + 同余方程 拓展欧几里得
题意:有两只青蛙,在一个圆上顺时针跳,问最少的相遇时间. 这个是同余方程的思路.可列出方程:(m-n)* X% L = y-x(mod L) 简化为 a * x = b (mod L) (1 ...
- [luoguP1516] 青蛙的约会(扩展欧几里得)
传送门 对于数论只会gcd的我,也要下定决心补数论了 列出方程 (x + t * m) % l = (y + t * n) % l 那么假设 这两个式子之间相差 num 个 l,即为 x + t * ...
- P1516/bzoj1477 青蛙的约会
青蛙的约会 exgcd 根据题意列出方程: 设所用时间为T,相差R圈时相遇 (x+T*m)-(y+T*n)=R*l 移项转换,得 T*(n-m)-R*l=x-y 设a=n-m,b=l,c=x-y,x_ ...
- POJ1061青蛙的约会[扩展欧几里得]
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 108911 Accepted: 21866 Descript ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- BZOJ-1477 青蛙的约会 拓展欧几里德
充权限之前做的...才来交 1477: 青蛙的约会 Time Limit: 2 Sec Memory Limit: 64 MB Submit: 369 Solved: 233 [Submit][Sta ...
随机推荐
- MUI+html5+javascript 点击事件触发页面间传值
关于如何进行页面转跳,请看 https://www.cnblogs.com/JUNELITTLEPANDA/p/15956176.html,以下跳转方法是采用的其中一种 1- 仅适用于移动端,pc端 ...
- 第06组 Beta冲刺 (1/6)
目录 1.1 基本情况 1.2 冲刺概况汇报 1.郝雷明 2. 方梓涵 3.曾丽莉 4.黄少丹 5. 董翔云 6.杜筱 7.鲍凌函 8.詹鑫冰 9.曹兰英 10.吴沅静 1.3 冲刺成果展示 1.1 ...
- 浏览器上写代码,4核8G微软服务器免费用,Codespaces真香
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 一图胜千言 先上图,下面是欣宸在自己的iPad Pro ...
- vue大型电商项目尚品汇(前台篇)day05
紧急更新第二弹,然后就剩下最后一弹,也就是整个前台的项目 一.购物车 1.加入购物车(新知识点) 加入到购物车是需要接口操作的,因为我们需要将用户的加入到购物车的保存到服务器数据库,你的账号后面才会在 ...
- 高通sensor理解
.1.高通为什么引入adsp? 2.adsp sensor 是如何工作起来的? 3.adsp 和ap 是如何通信的? 4.adsp 架构组成 解答: 1.高通在msm8960之前sensor 是挂在p ...
- 搭建ceph分布式文件系统
1. 准备4台虚拟机 ceph 192.168.66.93 管理osd,mon节点 ceph-node1 192.168.66.94 osd节点 ceph-node2 192.168.66.95 ...
- 基于springBoot项目如何配置多数据源
前言 有时,在一个项目中会用到多数据源,现在对自己在项目中多数据源的操作总结如下,有不到之处敬请批评指正! 1.pom.xml的依赖引入 <dependency> <groupId& ...
- Hdfs存储策略
一.磁盘选择策略 1.1.介绍 在HDFS中,所有的数据都是存在各个DataNode上的.而这些DataNode上的数据都是存放于节点机器上的各个目录中的,而一般每个目录我们会对应到1个独立的盘,以便 ...
- Java中时间方法大全01(持续更新)
下面这些方法都可以封装到一个工具类中 /** * 获取当前时间的时间戳 */ public static int getCurrentTimeIntValue() { return (int) (Sy ...
- 最小生成树 链式前向星 Prim&Kruskal
Prim: Prim的思想是将任意节点作为根,再找出与之相邻的所有边(用一遍循环即可),再将新节点更新并以此节点作为根继续搜,维护一个数组:dis,作用为已用点到未用点的最短距离. 证明:Prim算法 ...