1. 概述

LinkedHashMap 继承自 HashMap,在 HashMap 基础上,通过维护一条双向链表,解决了 HashMap 不能随时保持遍历顺序和插入顺序一致的问题。除此之外,LinkedHashMap 对访问顺序也提供了相关支持。在一些场景下,该特性很有用,比如缓存。在实现上,LinkedHashMap 很多方法直接继承自 HashMap,仅为维护双向链表覆写了部分方法。所以,要看懂 LinkedHashMap 的源码,需要先看懂 HashMap 的源码。关于 HashMap 的源码分析,本文并不打算展开讲了。大家可以参考我之前的一篇文章“HashMap 源码详细分析(JDK1.8)”。在那篇文章中,我配了十多张图帮助大家学习 HashMap 源码。

本篇文章的结构与我之前两篇关于 Java 集合类(集合框架)的源码分析文章不同,本文将不再分析集合类的基本操作(查找、遍历、插入、删除),而是把重点放在双向链表的维护上。包括链表的建立过程,删除节点的过程,以及访问顺序维护的过程等。好了,接下里开始分析吧。

2. 原理

上一章说了 LinkedHashMap 继承自 HashMap,所以它的底层仍然是基于拉链式散列结构。该结构由数组和链表或红黑树组成,结构示意图大致如下:

LinkedHashMap 在上面结构的基础上,增加了一条双向链表,使得上面的结构可以保持键值对的插入顺序。同时通过对链表进行相应的操作,实现了访问顺序相关逻辑。其结构可能如下图:

上图中,淡蓝色的箭头表示前驱引用,红色箭头表示后继引用。每当有新键值对节点插入,新节点最终会接在 tail 引用指向的节点后面。而 tail 引用则会移动到新的节点上,这样一个双向链表就建立起来了。

上面的结构并不是很难理解,虽然引入了红黑树,导致结构看起来略为复杂了一些。但大家完全可以忽略红黑树,而只关注链表结构本身。好了,接下来进入细节分析吧。

3. 源码分析

3.1 Entry 的继承体系

在对核心内容展开分析之前,这里先插队分析一下键值对节点的继承体系。先来看看继承体系结构图:

上面的继承体系乍一看还是有点复杂的,同时也有点让人迷惑。HashMap 的内部类 TreeNode 不继承它的了一个内部类 Node,却继承自 Node 的子类 LinkedHashMap 内部类 Entry。这里这样做是有一定原因的,这里先不说。先来简单说明一下上面的继承体系。LinkedHashMap 内部类 Entry 继承自 HashMap 内部类 Node,并新增了两个引用,分别是 before 和 after。这两个引用的用途不难理解,也就是用于维护双向链表。同时,TreeNode 继承 LinkedHashMap 的内部类 Entry 后,就具备了和其他 Entry 一起组成链表的能力。但是这里需要大家考虑一个问题。当我们使用 HashMap 时,TreeNode 并不需要具备组成链表能力。如果继承 LinkedHashMap 内部类 Entry ,TreeNode 就多了两个用不到的引用,这样做不是会浪费空间吗?简单说明一下这个问题(水平有限,不保证完全正确),这里这么做确实会浪费空间,但与 TreeNode 通过继承获取的组成链表的能力相比,这点浪费是值得的。在 HashMap 的设计思路注释中,有这样一段话:

Because TreeNodes are about twice the size of regular nodes, we

use them only when bins contain enough nodes to warrant use

(see TREEIFY_THRESHOLD). And when they become too small (due to

removal or resizing) they are converted back to plain bins. In

usages with well-distributed user hashCodes, tree bins are

rarely used.

大致的意思是 TreeNode 对象的大小约是普通 Node 对象的2倍,我们仅在桶(bin)中包含足够多的节点时再使用。当桶中的节点数量变少时(取决于删除和扩容),TreeNode 会被转成 Node。当用户实现的 hashCode 方法具有良好分布性时,树类型的桶将会很少被使用。

通过上面的注释,我们可以了解到。一般情况下,只要 hashCode 的实现不糟糕,Node 组成的链表很少会被转成由 TreeNode 组成的红黑树。也就是说 TreeNode 使用的并不多,浪费那点空间是可接受的。假如 TreeNode 机制继承自 Node 类,那么它要想具备组成链表的能力,就需要 Node 去继承 LinkedHashMap 的内部类 Entry。这个时候就得不偿失了,浪费很多空间去获取不一定用得到的能力。

说到这里,大家应该能明白节点类型的继承体系了。这里单独拿出来说一下,为下面的分析做铺垫。叙述略为啰嗦,见谅。

3.1 链表的建立过程

链表的建立过程是在插入键值对节点时开始的,初始情况下,让 LinkedHashMap 的 head 和 tail 引用同时指向新节点,链表就算建立起来了。随后不断有新节点插入,通过将新节点接在 tail 引用指向节点的后面,即可实现链表的更新。

Map 类型的集合类是通过 put(K,V) 方法插入键值对,LinkedHashMap 本身并没有覆写父类的 put 方法,而是直接使用了父类的实现。但在 HashMap 中,put 方法插入的是 HashMap 内部类 Node 类型的节点,该类型的节点并不具备与 LinkedHashMap 内部类 Entry 及其子类型节点组成链表的能力。那么,LinkedHashMap 是怎样建立链表的呢?在展开说明之前,我们先看一下 LinkedHashMap 插入操作相关的代码:

// HashMap 中实现
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} // HashMap 中实现
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0) {...}
// 通过节点 hash 定位节点所在的桶位置,并检测桶中是否包含节点引用
if ((p = tab[i = (n - 1) & hash]) == null) {...}
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode) {...}
else {
// 遍历链表,并统计链表长度
for (int binCount = 0; ; ++binCount) {
// 未在单链表中找到要插入的节点,将新节点接在单链表的后面
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) {...}
break;
}
// 插入的节点已经存在于单链表中
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null) {...}
afterNodeAccess(e); // 回调方法,后续说明
return oldValue;
}
}
++modCount;
if (++size > threshold) {...}
afterNodeInsertion(evict); // 回调方法,后续说明
return null;
} // HashMap 中实现
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
} // LinkedHashMap 中覆写
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
// 将 Entry 接在双向链表的尾部
linkNodeLast(p);
return p;
} // LinkedHashMap 中实现
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
tail = p;
// last 为 null,表明链表还未建立
if (last == null)
head = p;
else {
// 将新节点 p 接在链表尾部
p.before = last;
last.after = p;
}
}

上面就是 LinkedHashMap 插入相关的源码,这里省略了部分非关键的代码。我根据上面的代码,可以知道 LinkedHashMap 插入操作的调用过程。如下:

我把 newNode 方法红色背景标注了出来,这一步比较关键。LinkedHashMap 覆写了该方法。在这个方法中,LinkedHashMap 创建了 Entry,并通过 linkNodeLast 方法将 Entry 接在双向链表的尾部,实现了双向链表的建立。双向链表建立之后,我们就可以按照插入顺序去遍历 LinkedHashMap,大家可以自己写点测试代码验证一下插入顺序。

以上就是 LinkedHashMap 维护插入顺序的相关分析。本节的最后,再额外补充一些东西。大家如果仔细看上面的代码的话,会发现有两个以after开头方法,在上文中没有被提及。在 JDK 1.8 HashMap 的源码中,相关的方法有3个:

// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }

根据这三个方法的注释可以看出,这些方法的用途是在增删查等操作后,通过回调的方式,让 LinkedHashMap 有机会做一些后置操作。上述三个方法的具体实现在 LinkedHashMap 中,本节先不分析这些实现,相关分析会在后续章节中进行。

3.2 链表节点的删除过程

与插入操作一样,LinkedHashMap 删除操作相关的代码也是直接用父类的实现。在删除节点时,父类的删除逻辑并不会修复 LinkedHashMap 所维护的双向链表,这不是它的职责。那么删除及节点后,被删除的节点该如何从双链表中移除呢?当然,办法还算是有的。上一节最后提到 HashMap 中三个回调方法运行 LinkedHashMap 对一些操作做出响应。所以,在删除及节点后,回调方法 afterNodeRemoval 会被调用。LinkedHashMap 覆写该方法,并在该方法中完成了移除被删除节点的操作。相关源码如下:

// HashMap 中实现
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
} // HashMap 中实现
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode) {...}
else {
// 遍历单链表,寻找要删除的节点,并赋值给 node 变量
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode) {...}
// 将要删除的节点从单链表中移除
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node); // 调用删除回调方法进行后续操作
return node;
}
}
return null;
} // LinkedHashMap 中覆写
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
// 将 p 节点的前驱后后继引用置空
p.before = p.after = null;
// b 为 null,表明 p 是头节点
if (b == null)
head = a;
else
b.after = a;
// a 为 null,表明 p 是尾节点
if (a == null)
tail = b;
else
a.before = b;
}

删除的过程并不复杂,上面这么多代码其实就做了三件事:

  1. 根据 hash 定位到桶位置
  2. 遍历链表或调用红黑树相关的删除方法
  3. 从 LinkedHashMap 维护的双链表中移除要删除的节点

举个例子说明一下,假如我们要删除下图键值为 3 的节点。

根据 hash 定位到该节点属于3号桶,然后在对3号桶保存的单链表进行遍历。找到要删除的节点后,先从单链表中移除该节点。如下:

然后再双向链表中移除该节点:

删除及相关修复过程并不复杂,结合上面的图片,大家应该很容易就能理解,这里就不多说了。

3.3 访问顺序的维护过程

前面说了插入顺序的实现,本节来讲讲访问顺序。默认情况下,LinkedHashMap 是按插入顺序维护链表。不过我们可以在初始化 LinkedHashMap,指定 accessOrder 参数为 true,即可让它按访问顺序维护链表。访问顺序的原理上并不复杂,当我们调用get/getOrDefault/replace等方法时,只需要将这些方法访问的节点移动到链表的尾部即可。相应的源码如下:

// LinkedHashMap 中覆写
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
// 如果 accessOrder 为 true,则调用 afterNodeAccess 将被访问节点移动到链表最后
if (accessOrder)
afterNodeAccess(e);
return e.value;
} // LinkedHashMap 中覆写
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
// 如果 b 为 null,表明 p 为头节点
if (b == null)
head = a;
else
b.after = a; if (a != null)
a.before = b;
/*
* 这里存疑,父条件分支已经确保节点 e 不会是尾节点,
* 那么 e.after 必然不会为 null,不知道 else 分支有什么作用
*/
else
last = b; if (last == null)
head = p;
else {
// 将 p 接在链表的最后
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}

上面就是访问顺序的实现代码,并不复杂。下面举例演示一下,帮助大家理解。假设我们访问下图键值为3的节点,访问前结构为:

访问后,键值为3的节点将会被移动到双向链表的最后位置,其前驱和后继也会跟着更新。访问后的结构如下:

3.4 基于 LinkedHashMap 实现缓存

前面介绍了 LinkedHashMap 是如何维护插入和访问顺序的,大家对 LinkedHashMap 的原理应该有了一定的认识。本节我们来写一些代码实践一下,这里通过继承 LinkedHashMap 实现了一个简单的 LRU 策略的缓存。在写代码之前,先介绍一下前置知识。

在3.1节分析链表建立过程时,我故意忽略了部分源码分析。本节就把忽略的部分补上,先看源码吧:

void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
// 根据条件判断是否移除最近最少被访问的节点
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
} // 移除最近最少被访问条件之一,通过覆盖此方法可实现不同策略的缓存
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}

上面的源码的核心逻辑在一般情况下都不会被执行,所以之前并没有进行分析。上面的代码做的事情比较简单,就是通过一些条件,判断是否移除最近最少被访问的节点。看到这里,大家应该知道上面两个方法的用途了。当我们基于 LinkedHashMap 实现缓存时,通过覆写removeEldestEntry方法可以实现自定义策略的 LRU 缓存。比如我们可以根据节点数量判断是否移除最近最少被访问的节点,或者根据节点的存活时间判断是否移除该节点等。本节所实现的缓存是基于判断节点数量是否超限的策略。在构造缓存对象时,传入最大节点数。当插入的节点数超过最大节点数时,移除最近最少被访问的节点。实现代码如下:

public class SimpleCache<K, V> extends LinkedHashMap<K, V> {

    private static final int MAX_NODE_NUM = 100;

    private int limit;

    public SimpleCache() {
this(MAX_NODE_NUM);
} public SimpleCache(int limit) {
super(limit, 0.75f, true);
this.limit = limit;
} public V save(K key, V val) {
return put(key, val);
} public V getOne(K key) {
return get(key);
} public boolean exists(K key) {
return containsKey(key);
} /**
* 判断节点数是否超限
* @param eldest
* @return 超限返回 true,否则返回 false
*/
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > limit;
}
}

测试代码如下:

public class SimpleCacheTest {

    @Test
public void test() throws Exception {
SimpleCache<Integer, Integer> cache = new SimpleCache<>(3); for (int i = 0; i < 10; i++) {
cache.save(i, i * i);
} System.out.println("插入10个键值对后,缓存内容:");
System.out.println(cache + "\n"); System.out.println("访问键值为7的节点后,缓存内容:");
cache.getOne(7);
System.out.println(cache + "\n"); System.out.println("插入键值为1的键值对后,缓存内容:");
cache.save(1, 1);
System.out.println(cache);
}
}

测试结果如下:

在测试代码中,设定缓存大小为3。在向缓存中插入10个键值对后,只有最后3个被保存下来了,其他的都被移除了。然后通过访问键值为7的节点,使得该节点被移到双向链表的最后位置。当我们再次插入一个键值对时,键值为7的节点就不会被移除。

本节作为对前面内的补充,简单介绍了 LinkedHashMap 在其他方面的应用。本节内容及相关代码并不难理解,这里就不在赘述了。

4. 总结

本文从 LinkedHashMap 维护双向链表的角度对 LinkedHashMap 的源码进行了分析,并在文章的结尾基于 LinkedHashMap 实现了一个简单的 Cache。在日常开发中,LinkedHashMap 的使用频率虽不及 HashMap,但它也个重要的实现。在 Java 集合框架中,HashMap、LinkedHashMap 和 TreeMap 三个映射类基于不同的数据结构,并实现了不同的功能。HashMap 底层基于拉链式的散列结构,并在 JDK 1.8 中引入红黑树优化过长链表的问题。基于这样结构,HashMap 可提供高效的增删改查操作。LinkedHashMap 在其之上,通过维护一条双向链表,实现了散列数据结构的有序遍历。TreeMap 底层基于红黑树实现,利用红黑树的性质,实现了键值对排序功能。我在前面几篇文章中,对 HashMap 和 TreeMap 以及他们均使用到的红黑树进行了详细的分析,有兴趣的朋友可以去看看。

到此,本篇文章就写完了,感谢大家的阅读!

附录:映射类文章列表

集合-LinkedHashMap 源码详细分析(JDK1.8)的更多相关文章

  1. LinkedHashMap 源码详细分析(JDK1.8)

    1. 概述 LinkedHashMap 继承自 HashMap,在 HashMap 基础上,通过维护一条双向链表,解决了 HashMap 不能随时保持遍历顺序和插入顺序一致的问题.除此之外,Linke ...

  2. HashMap 源码详细分析(JDK1.8)

    一.概述 本篇文章我们来聊聊大家日常开发中常用的一个集合类 - HashMap.HashMap 最早出现在 JDK 1.2中,底层基于散列算法实现.HashMap 允许 null 键和 null 值, ...

  3. linkedHashMap源码解析(JDK1.8)

    引言 关于java中的不常见模块,让我一下子想我也想不出来,所以我希望以后每次遇到的时候我就加一篇.上次有人建议我写全所有常用的Map,所以我研究了一晚上LinkedHashMap,把自己感悟到的解释 ...

  4. [Java] LinkedHashMap 源码简要分析

    特点 * 各个元素不仅仅按照HashMap的结构存储,而且每个元素包含了before/after指针,通过一个头元素header,形成一个双向循环链表.使用循环链表,保存了元素插入的顺序. * 可设置 ...

  5. 一文读懂Spring动态配置多数据源---源码详细分析

    Spring动态多数据源源码分析及解读 一.为什么要研究Spring动态多数据源 ​ 期初,最开始的原因是:想将答题服务中发送主观题答题数据给批改中间件这块抽象出来, 但这块主要使用的是mq消息的方式 ...

  6. ArrayList 源码详细分析

    1.概述 ArrayList 是一种变长的集合类,基于定长数组实现.ArrayList 允许空值和重复元素,当往 ArrayList 中添加的元素数量大于其底层数组容量时,其会通过扩容机制重新生成一个 ...

  7. Java集合——LinkedHashMap源码详解

    个KV.LinkedHashMap不仅像HashMap那样对其进行基于哈希表和单链表的Entry数组+ next链表的存储方式,而且还结合了LinkedList的优点,为每个Entry节点增加了前驱和 ...

  8. DownloadProvider 源码详细分析

    DownloadProvider 简介 DownloadProvider 是Android提供的DownloadManager的增强版,亮点是支持断点下载,提供了“开始下载”,“暂停下载”,“重新下载 ...

  9. android_launcher的源码详细分析

    转载请注明出处:http://blog.csdn.net/fzh0803/archive/2011/03/26/6279995.aspx 去年做了launcher相关的工作,看了很长时间.很多人都在修 ...

  10. 源码分析 ucosii/source 任务源码详细分析

    分析源码: 得先学会读文档, 函数前边的 note :是了解该程序员的思想的途径.不得不重视 代码前边的  Notes,了解思想后,然后在分析代码时看他是如何具体实现的. 1. ucosii/sour ...

随机推荐

  1. vue安装与卸载

    一.安装最新版本 npm install -g @vue/cli 或 yarn global remove vue-cli 查看版本 vue --version 或 vue -V 二.vue-cli( ...

  2. Django框架搭建web项目(三)

    参考官网文档:https://docs.djangoproject.com/zh-hans/4.0/intro/tutorial02/ 在生成的app中进行数据库表设计. 1.在路径H:\myproj ...

  3. scanf 读入 string 注意点

    在做题的时候需要读入字符串,但是又不想使用char 数组,于是采用string存储,当时遇到了scanf读取string失败,查阅资料后总结下. scanf是c的标准输入输出流,想要读入string, ...

  4. SQL五十题记录 1-2

    前言: 创建以下四张表:①:课程表 ②:成绩表 ③:学生表 ④:教师表 1.查询课程编号为""01""的课程比"02"的课程成绩高的所有学生 ...

  5. mitudesk的pytorch基础

    pytorch定义张量的方法和Numpy差不多 2. 标量才能对张量求导,代表其在各个方向上的偏导数,结果是一个张量 3. 在pyt中张量可以对张量求导,前提条件是求导时传一个1,1,1,1,进去,其 ...

  6. curl 查看响应时间

    curl -o /dev/null -s -w "time_namelookup:%{time_namelookup}\ntime_connect: %{time_connect}\ntim ...

  7. Linux 格式化 挂载 Gdisk

    对磁盘进行格式化mkfs 创建文件系统 xfs ext4/2/3 mkfs -b 设定数据区块(block)占用空间大小,目前支持1024.2048.4096 bytes每个块.默认4K mkfs - ...

  8. mybatis的xml中#{}和${}区别

    #{}表示一个占位符号,通过#{}可以实现preparedStatement向占位符中设置值,自动进行java类型和jdbc类型转换,#{}可以有效防止sql注入.初步编译后的sql语句是" ...

  9. 6、jmeter的配置元件:参数化--CSV文件

    1.参数化一些数据,就需要用到csv文件 Filename:文件位置和文件名 (和jmeter同一个目录就不需要写哪个盘 直接写文件名字就可以了) File  encoding:编码 Variable ...

  10. c语言数据结构 树的基本操作

    树的基本操作有创建,插入,删除,以及各种遍历的应用,如:利用后序遍历求高度,利用前序遍历求层数的结点 基本算法思路:创建二叉树函数参数必须接受二级指针!如果使用同级指针,无法返回创建后的结果,利用递归 ...