模型验证 model validation 就是在选择 模型 和 超参数 之后。通过对训练数据进行学习。对比模型对 已知 数据的预测值和实际值 的差异。

错误的模型验证方法。

用同一套数据训练 和 评估 模型。 准确率总是100% 。

模型验证正确方法: 留出集。

从训练模型的数据中留出一部分。用这部分数据来验证模型的性能。

使用train_test_split 工具。

交叉检验

用留出集进行模型验证有一个缺点,就是模型失去了一部分训练机会。有一半数据都没有为模型训练做出贡献。

每个子集既是训练集,也是验证集。





这就是俩轮交叉校验。 扩展一下,实现更多轮交叉校验。



使用cross_val_score 可以非常简单的实现。



极端情况,只留一个样本左测试。这种交叉检验类型模型被称为 LOO leave-one-out .



选择最优模型

如何选择模型和超参数

  • 偏差与方差的均衡

    “最优模型”的问题 基本可以看出是找出偏差 与方差平衡点的问题。

  • 欠拟合

    希望从数据中找到一条直线,但由于数据本质上比直线要复杂, 也就是说模型没有足够的灵活性来适应数据的所有特征。

    也叫高偏差

  • 过拟合

    希望用高阶多项式拟合数据,有足够的灵活性,完美地适应数据的所有特征。 十分准确的描述了训练数据,也过多的学习了数据的噪音。适应数据所有特征的同时,也适应了随机误差,

    也叫高方差

对于高偏差模型:模型在验证集的表现与训练集的表现类似

对于高方差模型:模型在验证集的表现远远不如训练集的表现。

如果我们有能力不断调整模型的复杂度,那么希望训练得分和验证得分如下

Scikit-Learn 验证曲线

用交叉校验计算一个模型的验证曲线。 用多项式 回归 模型。 多项式的次数是一个可调参数。

一次多项式: y = ax + b

三次多项式: y = ax^3 + bx^2 + cx + d

在Scikit-Learn 中,可以用一个带多项式预处理器 的 简单线性回归模型实现。

用一个管道命令 来组合 这 俩种操作。

创建一些数据 给模型 拟合

数据可视化,将不同次数的多项式拟合曲线画出来

问题:究竟多项式的次数是多少,才能在 偏差 和 方差 间达到平衡。

可以通过可视化验证曲线来找答案。

利用Scikit-Learn的 validation_curve函数 可以非常简单的实现。 只提供模型、数据、参数名称和验证范围信息。

函数就会 自动计算验证范围 内的训练得分 和 验证得分。

学习曲线

英雄模型复杂度的另一个重要因素就是 最优模型 往往受到 训练数据量 的影响。

学习曲线的特征:

  • 特定复杂度的模型 对较小的数据集 容易 过拟合:此时 训练得分较高,验证得分较低。
  • 特定复杂度的模型 对较大的数据集 容易 欠拟合:随着数据的增大,训练得分会不断降低, 验证得分会不断升高。
  • 模型的验证集得分永远不会高于 训练集得分: 俩条曲线一直在靠近,不会交叉



    学习曲线最重要的特征,随着训练样本数量的增加,分数会收敛到定值,因此,一旦训练数据已经使模型收件,再增加训练数据 也无济于事, 只能通过换模型。

验证时间:网格搜索

Scikit-Learn在grid_search提供了一个自动化工具来寻找最优多项式的回归模型。

GridSearchCV元评估器来设置这些参数。

然后调用fit()方法在每个网格上拟合模型。并同时记录每个点的得分

获取最优参数

Python数据科学手册-机器学习之模型验证的更多相关文章

  1. Python数据科学手册-机器学习介绍

    机器学习分为俩类: 有监督学习 supervised learning 和 无监督学习 unsupervised learning 有监督学习: 对数据的若干特征与若干标签之间 的关联性 进行建模的过 ...

  2. Python数据科学手册-机器学习:朴素贝叶斯分类

    朴素贝叶斯模型 朴素贝叶斯模型是一组非常简单快速的分类方法,通常适用于维度非常高的数据集.因为运行速度快,可调参数少.是一个快速粗糙的分类基本方案. naive Bayes classifiers 贝 ...

  3. Python数据科学手册-机器学习: k-means聚类/高斯混合模型

    前面学习的无监督学习模型:降维 另一种无监督学习模型:聚类算法. 聚类算法直接冲数据的内在性质中学习最优的划分结果或者确定离散标签类型. 最简单最容易理解的聚类算法可能是 k-means聚类算法了. ...

  4. Python数据科学手册-机器学习: 决策树与随机森林

    无参数 算法 随机森林 随机森林是一种集成方法,集成多个比较简单的评估器形成累计效果. 导入标准程序库 随机森林的诱因: 决策树 随机森林是建立在决策树 基础上 的集成学习器 建一颗决策树 二叉决策树 ...

  5. Python数据科学手册-机器学习: 支持向量机

    support vector machine SVM 是非常强大. 灵活的有监督学习算法, 可以用于分类和回归. 贝叶斯分类器,对每个类进行了随机分布的假设,用生成的模型估计 新数据点 的标签.是属于 ...

  6. Python数据科学手册-机器学习:线性回归

    朴素贝叶斯是解决分类任务的好起点,线性回归是解决回归任务的好起点. 简单线性回归 将数据拟合成一条直线. y = ax + b , a 是斜率, b是直线截距 原始数据如下: 使用LinearRegr ...

  7. Python数据科学手册-机器学习之特征工程

    特征工程常见示例: 分类数据.文本.图像. 还有提高模型复杂度的 衍生特征 和 处理 缺失数据的填充 方法.这个过程被叫做向量化.把任意格式的数据 转换成具有良好特性的向量形式. 分类特征 比如房屋数 ...

  8. Python数据科学手册-机器学习: 流形学习

    PCA对非线性的数据集处理效果不太好. 另一种方法 流形学习 manifold learning 是一种无监督评估器,试图将一个低维度流形嵌入到一个高纬度 空间来描述数据集 . 类似 一张纸 (二维) ...

  9. Python数据科学手册-机器学习: 主成分分析

    PCA principal component analysis 主成分分析是一个快速灵活的数据降维无监督方法, 可视化一个包含200个数据点的二维数据集 x 和 y有线性关系,无监督学习希望探索x值 ...

随机推荐

  1. Nacos 的安装与服务的注册

    Nacos 的安装与服务的注册 我们都知道naocs是一个注册中心,那么注册中心是什么呢? 什么是注册中心? 它类似与一个中介角色(不收费的良心中介), 在微服务中起纽带的作用,它提供了服务和服务地址 ...

  2. Three.js系列: 在元宇宙看电影,享受 VR 视觉盛宴

    本文 gihtub 地址: https://github.com/hua1995116/Fly-Three.js 最近元宇宙的概念很火,并且受到疫情的影响,我们的出行总是受限,电影院也总是关门,但是在 ...

  3. 常用API(Java)

    常用API Object toString方法 场景:当我们使用toString方法想要输出对象变量时,官方提供的toString方法会直接输出对象所在的地址,而不是我们想要的对象变量,所以我们要把t ...

  4. vivo官网APP全机型UI适配方案

    vivo 互联网客户端团队- Xu Jie 日益新增的机型,给开发人员带来了很多的适配工作.代码能不能统一.apk能不能统一.物料如何选取.样式怎么展示等等都是困扰开发人员的问题,本方案就是介绍不同机 ...

  5. maven的常见问题

    idea2021.3报错-Maven-Terminated-with-exit-code-1

  6. 使用Three.js实现炫酷的赛博朋克风格3D数字地球大屏 🌐

    声明:本文涉及图文和模型素材仅用于个人学习.研究和欣赏,请勿二次修改.非法传播.转载.出版.商用.及进行其他获利行为. 背景 近期工作有涉及到数字大屏的需求,于是利用业余时间,结合 Three.js ...

  7. 基于Caffe ResNet-50网络实现图片分类(仅推理)的实验复现

    摘要:本实验主要是以基于Caffe ResNet-50网络实现图片分类(仅推理)为例,学习如何在已经具备预训练模型的情况下,将该模型部署到昇腾AI处理器上进行推理. 本文分享自华为云社区<[CA ...

  8. 别再用 System.currentTimeMillis 统计耗时了,太 Low,试试 Spring Boot 源码在用的 StopWatch吧,够优雅!

    大家好,我是二哥呀! 昨天,一位球友问我能不能给他解释一下 @SpringBootApplication 注解是什么意思,还有 Spring Boot 的运行原理,于是我就带着他扒拉了一下这个注解的源 ...

  9. Azure Devops(十五) 使用Azure的私有Maven仓库

    上一篇文章中,我们介绍了如何使用Azure的nuget仓库,今天我们来研究一下如何使用azure给我们提供的maven仓库. 首先,我们打开azureDevops,点击到制品界面,然后选择maven. ...

  10. 小白之Python基础(五)

    使用dict和set 1.dict :是direction字典的缩写 1) 通过{ }创建,使用健-值(key-value)存储:用"键值对"表示映射关系,例如 {名字:对应的成绩 ...