PostgreSQL 欺骗优化器之扩展统计信息
一、什么是扩展统计
扩展统计对象, 追踪指定表、外部表或物化视图的数据。 目前支持的种类:
- 启用n-distinct统计的
ndistinct
。 - 启用功能依赖性统计的
dependencies
。 - 启用最常见的值列表的
mcv
。
本文仅讨论n-distinct统计信息,在优化器中的作用。手工修改统计信息,使得执行计划发生改变。
二、数据准备
建立一个大表,这个表模拟商业交易明细记录。这个表,不仅有海量的数据,也具有大量的维度信息。
create table t_order as
select id,
'dim01_' || (random() * 5)::int as dim01,
'dim02_' || (random() * 5)::int as dim02,
'dim03_' || (random() * 5)::int as dim03,
'dim04_' || (random() * 5)::int as dim04,
'dim05_' || (random() * 5)::int as dim05,
'dim06_' || (random() * 5)::int as dim06,
'dim07_' || (random() * 5)::int as dim07,
'dim08_' || (random() * 5)::int as dim08,
'dim09_' || (random() * 5)::int as dim09,
'dim10_' || (random() * 5)::int as dim10,
'dim11_' || (random() * 5)::int as dim11,
'dim12_' || (random() * 5)::int as dim12,
'dim13_' || (random() * 5)::int as dim13,
'dim14_' || (random() * 5)::int as dim14,
'dim15_' || (random() * 5)::int as dim15,
'dim16_' || (random() * 5)::int as dim16,
'dim17_' || (random() * 5)::int as dim17,
'dim18_' || (random() * 5)::int as dim18,
'dim19_' || (random() * 5)::int as dim19,
'dim20_' || (random() * 5)::int as dim20,
'dim21_' || (random() * 5)::int as dim21,
'dim22_' || (random() * 5)::int as dim22,
'dim23_' || (random() * 5)::int as dim23,
'dim24_' || (random() * 5)::int as dim24,
'dim25_' || (random() * 5)::int as dim25,
'dim26_' || (random() * 5)::int as dim26,
'dim27_' || (random() * 5)::int as dim27,
'dim28_' || (random() * 5)::int as dim28,
'dim29_' || (random() * 5)::int as dim29,
'dim30_' || (random() * 5)::int as dim30,
(random() * 100)::numeric(20, 2) as amount,
(now() - (random() * 10)::numeric(10, 2))::date as created
from (select generate_series(1, 10000000) id) t;
10000000 rows affected in 1 m 8 s 747 ms
select pg_table_size('t_order')/1024/1024;
?column?
----------
2893
(1 行记录)
用例数据有1000万行,30个维度,有2893 MB。真实商业业务系统中,订单数据表,会达到10 TB,每日增量数据可以达到100 GB,比用例数据更加庞大。
三、查询需求
在报表系统中,还需要进一步将交易明细表的数据,生成所有维度的汇总数据表。汇总数据表,是按每个维度的基本度进行组合的聚合数据,各类报表是在查询结果的基础上,选取一个或几个维度,读取维度的细粒度,再次聚合计算而成。如果维度的细粒度较低,最终的海量的交易明细数据,会压缩成少量的维度明细聚合记录。在查询的计划中,会使用两种聚合函数实现:HashAggregate与GroupAggregate。
HashAggregate
对于hash聚合来说,数据库会根据group by字段后面的值算出hash值,并根据前面使用的聚合函数在内存中维护对应的列表。内存参数work_mem和表的分析结果,决定是否选择HashAggregate。
GroupAggregate
对于普通聚合函数,使用group聚合,其原理是先将表中的数据按照group by的字段排序,这样子同一个group by的值就在一起,对排好序的数据进行一次全扫描,得到聚合的结果 .
select dim01, count(*) as cnt, sum(amount) as amount, ....
from t_order
group by dim01, .....
为了便于展现优化器选择HashAggregate和GroupAggregate的语句上的差别,用例将内存参数work_mem设置较小的数值。
set work_mem = 1024;
四试验步骤
1、数据表分析之前
关闭自动数据收集。由于没有数据表的统计信息,分组列的行估值行数为200,行数估值总计是200的n次方或总行数。
按单列分组聚合,执行计划使用HashAggregate。
explain
select count(*) , sum(amount) ,count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount),count(*) , sum(amount)
from t_order
group by dim01;
HashAggregate (cost=1245372.49..1245381.99 rows=200 width=632)
Group Key: dim01
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=52)
按多列分组聚合,执行计划使用GroupAggregate。
explain
select count(*) , sum(amount)
from t_order
group by dim01,dim02 ;
GroupAggregate (cost=3068597.60..3194097.81 rows=40000 width=104)
" Group Key: dim01, dim02"
-> Sort (cost=3068597.60..3093597.64 rows=10000017 width=84)
" Sort Key: dim01, dim02"
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=84)
2、数据表分析之后
由于已知数据表的统计信息,行数估值总计是多个分组列的统计值的乘积或总行数。这里的 rows=7776=6^5
- HashAggregate
explain
select count(*), sum(amount), count(*), sum(amount), count(*)
from t_order
group by dim01, dim02, dim03, dim04 , dim05 ;
HashAggregate (cost=720371.59..720488.23 rows=7776 width=128)
" Group Key: dim01, dim02, dim03, dim04, dim05"
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=46)
- GroupAggregate
--增加聚合函数列
explain
select count(*), sum(amount), count(*), sum(amount), count(*), sum(amount)
from t_order
group by dim01, dim02, dim03, dim04 , dim05 ;
GroupAggregate (cost=2248285.10..2548421.69 rows=7776 width=160)
" Group Key: dim01, dim02, dim03, dim04, dim05"
-> Sort (cost=2248285.10..2273285.14 rows=10000017 width=46)
" Sort Key: dim01, dim02, dim03, dim04, dim05"
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=46)
--增加分组列
explain
select count(*)
from t_order
group by dim01, dim02, dim03, dim04 , dim05, dim06 ;
GroupAggregate (cost=2248285.10..2448752.00 rows=46656 width=56)
" Group Key: dim01, dim02, dim03, dim04, dim05, dim06"
-> Sort (cost=2248285.10..2273285.14 rows=10000017 width=48)
" Sort Key: dim01, dim02, dim03, dim04, dim05, dim06"
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=48)
3、通过distinct分析
distinct子句具有相同的性质。查询语句仅包含distinct多个维度列,不同的估值行数,会影响计划的选择。
- HashAggregate
explain analyse
select distinct dim01 , dim02 , dim03 , dim04 , dim05 ,dim06
from t_order;
HashAggregate (cost=620371.43..620837.99 rows=46656 width=48) (actual time=4422.376..4427.546 rows=46656 loops=1)
" Group Key: dim01, dim02, dim03, dim04, dim05, dim06"
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=48) (actual time=0.013..710.242 rows=10000000 loops=1)
Planning Time: 0.081 ms
Execution Time: 4428.778 ms
- GroupAggregate
explain analyse
select distinct dim01 , dim02 , dim03 , dim04 , dim05 ,dim06 , dim07
from t_order;
Unique (cost=2316647.10..2516647.44 rows=279936 width=56) (actual time=64027.276..74826.618 rows=279456 loops=1)
-> Sort (cost=2316647.10..2341647.14 rows=10000017 width=56) (actual time=64027.274..72741.372 rows=10000000 loops=1)
" Sort Key: dim01, dim02, dim03, dim04, dim05, dim06, dim07"
Sort Method: external merge Disk: 645840kB
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=56) (actual time=0.014..1469.598 rows=10000000 loops=1)
Planning Time: 0.080 ms
Execution Time: 74872.438 ms
4、阶段分析
优化器的计算公式,如果综合估值达到某个阈值后, 内存参数work_mem,不能满足HashAggregate需要的内存空间,就会选择GroupAggregate。GroupAggregate函数会先排序后聚合,所需要的更多的CPU时间。
work_mem不满足HashAggregate需要
set work_mem = 10240;
explain (analyse,buffers)
select count(*)
from t_order
group by dim01, dim02; GroupAggregate (cost=2385009.10..2485409.27 rows=40000 width=72) (actual time=8648.437..11283.800 rows=36 loops=1)
Group Key: dim01, dim02
Buffers: shared hit=370371, temp read=87632 written=87812
-> Sort (cost=2385009.10..2410009.14 rows=10000017 width=64) (actual time=8620.699..10353.186 rows=10000000 loops=1)
Sort Key: dim01, dim02
Sort Method: external merge Disk: 254472kB
Buffers: shared hit=370371, temp read=87632 written=87812
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=64) (actual time=0.024..939.992 rows=10000000 loops=1)
Buffers: shared hit=370371
Planning Time: 0.178 ms
Execution Time: 11300.646 ms
work_mem满足HashAggregate需要
set work_mem = 10240000;
explain (analyse,buffers)
select count(*)
from t_order
group by dim01, dim02; HashAggregate (cost=545371.30..545771.30 rows=40000 width=72) (actual time=2211.028..2211.127 rows=36 loops=1)
Group Key: dim01, dim02
Buffers: shared hit=370371
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=64) (actual time=0.013..606.175 rows=10000000 loops=1)
Buffers: shared hit=370371
Planning Time: 0.127 ms
Execution Time: 2212.227 ms
work_mem较小数值,收集表的单列统计信息
有了更准确的列值统计信息,即使多个分组列,查询计划也可以使用HashAggregate。
set work_mem = 10240;
analyse t_order; explain analyse
select count(*), sum(amount)
from t_order
group by dim01 , dim02 , dim03, dim04 , dim05; HashAggregate (cost=645371.47..645468.67 rows=7776 width=80) (actual time=5684.939..5686.491 rows=7776 loops=1)
Group Key: dim01, dim02, dim03, dim04, dim05
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=46) (actual time=0.015..666.171 rows=10000000 loops=1)
Planning Time: 0.177 ms
Execution Time: 5687.117 ms当分组列过多,优化器就不在选择HashAggregate。
explain analyse
select count(*), sum(amount)
from t_order
group by dim01, dim02, dim03, dim04, dim05, dim06 ; GroupAggregate (cost=2316647.10..2542230.68 rows=46656 width=88) (actual time=47971.812..58032.974 rows=46656 loops=1)
Group Key: dim01, dim02, dim03, dim04, dim05, dim06
-> Sort (cost=2316647.10..2341647.14 rows=10000017 width=54) (actual time=47971.777..55725.887 rows=10000000 loops=1)
Sort Key: dim01, dim02, dim03, dim04, dim05, dim06
Sort Method: external merge Disk: 635984kB
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=54) (actual time=0.014..2853.353 rows=10000000 loops=1)
Planning Time: 0.158 ms
Execution Time: 58071.107 ms
五、扩展统计-多列统计信息
创建扩展统计对象,可以精确的获取精确的多列重复值,优化器选择了性能更好的HashAggregate。
create statistics t_order_01 (ndistinct ) on dim01 , dim02 , dim03, dim04 , dim05 , dim06 from t_order;
analyse t_order;
explain analyse
select count(*), sum(amount)
from t_order
group by dim01 , dim02 , dim03, dim04 , dim05 , dim06;
HashAggregate (cost=670365.21..670792.91 rows=34216 width=88) (actual time=6810.690..6822.648 rows=46656 loops=1)
Group Key: dim01, dim02, dim03, dim04, dim05, dim06
-> Seq Scan on t_order (cost=0.00..470369.07 rows=9999807 width=54) (actual time=0.008..693.920 rows=10000000 loops=1)
Planning Time: 0.332 ms
Execution Time: 6824.820 ms
1、扩展统计-查看信息
select * from pg_statistic_ext where stxname='t_order_01';
-[ RECORD 1 ]+----------------
oid | 670835
stxrelid | 670816
stxname | t_order_01
stxnamespace | 18629
stxowner | 16384
stxkeys | 2 3 4 5 6 7
stxkind | {d}
stxkeys列值,对应“ dim01 , dim02 , dim03, dim04 , dim05 , dim06”等列的序号。
kingbase=# select stxname,stxdndistinct from pg_statistic_ext_data , pg_statistic_ext where stxoid = oid and stxname='t_order_01';
stxname | t_order_01
stxdndistinct | {"2, 3": 36, "2, 4": 36, ... "3, 4": 36, ... "6, 7": 36, "2, 3, 4": 216, "2, 3, 5": 216, ... "5, 6, 7": 216, "2, 3, 4, 5": 1296, ... "2, 3, 4, 5, 6, 7": 827260}
stxdndistinct列值,是多列的所有组合数之集合,sum(C(n,[2-n]))个单元。如果n值过大,表分析用时就会非常大。
2、扩展统计-限制
扩展统计对象限制了统计元素的个数,不能超过8个。分析表的用时,随统计元素的数量,而加速增长。
create statistics t_order_01 (ndistinct ) on dim01 , dim02 , dim03, dim04 , dim05 , dim06,dim07,dim08,dim09 from t_order;
错误: 在一个统计信息中不能使用超过 8 个字段
分析用时统计表
元素数量 | Time | 增长% |
---|---|---|
2 | 649 ms | |
3 | 702 ms | 8 |
4 | 872 ms | 24 |
5 | 1338 ms | 53 |
6 | 2452 ms | 83 |
7 | 5185 ms | 111 |
8 | 11659 ms | 125 |
3、扩展统计-超限
如果在不能增加内存参数work_mem的数值,分组列又超出8个列,这样的情况需要下面的方法,可以绕过限制。
建立数据表的样本数据表
创建1行的样本数据表。
create table t_order_mini
as
select * from t_order limit 1;
创建扩展统计对象
数据表和样本表关闭autovacuum,建立扩展统计对象,并修改stxkeys列值。
--关闭表的autovacuum属性
ALTER TABLE t_order SET (autovacuum_enabled = false, toast.autovacuum_enabled = false);
ALTER TABLE t_order_mini SET (autovacuum_enabled = false, toast.autovacuum_enabled = false); --建立扩展统计对象
create statistics t_order_sta (ndistinct ) on
dim01 , dim02
from t_order_mini; create statistics t_order_mini_sta (ndistinct ) on
dim01 , dim02
from t_order_mini; --手工修改stxkeys列值,用分组列的attnum值。
update pg_statistic_ext
set stxkeys= (select attnums::int2vector
from (select (string_agg(attnum::text, ' ')) as attnums
from pg_attribute
where attrelid = 't_order'::regclass
and attname in (
'dim01', 'dim02', 'dim03', 'dim04', 'dim05', 'dim06', 'dim07', 'dim08',
'dim09', 'dim10', 'dim11', 'dim12', 'dim13', 'dim14', 'dim15', 'dim16',
'dim17', 'dim18', 'dim19', 'dim20'
)
order by attnum) t)
where stxname in ('t_order_sta', 't_order_mini_sta');
分析样本表
analyze t_order_mini ;
ANALYZE select e.stxname, length(d.stxdndistinct), substr(stxdndistinct, 1, 100) stxdndistinct
from pg_statistic_ext_data as d, pg_statistic_ext as e
where d.stxoid = e.oid and e.stxname = 't_order_mini_sta'; -[ RECORD 1 ]-+-----------------------------------------------------------------------------------------------------
stxname | t_order_mini_sta
length | 90177350
stxdndistinct | {"2, 3": 1, "2, 4": 1, "2, 5": 1, "2, 6": 1, "2, 7": 1, "2, 8": 1, "2, 9": 1, "2, 10": 1, "2, 11": 1因数据库线程分配内存上限是 1 GB,以及物理内存的限制,会有以下错误信息。建议统计信息对象包含的列,不要超过20个列。
analyze t_order_mini ;
错误: invalid memory alloc request size 2147483216 analyze t_order_mini ;
服务器意外地关闭了联接
这种现象通常意味着服务器在处理请求之前,或者正在处理请求的时候意外中止更新数据表的扩展统计值
用样本表的扩展统计值,更新数据表的扩展统计值。
update pg_statistic_ext_data
set stxdndistinct=(select d.stxdndistinct
from pg_statistic_ext_data as d,
pg_statistic_ext as e
where d.stxoid = e.oid
and e.stxname = 't_order_mini_sta')
from pg_statistic_ext as e
where stxoid = e.oid
and e.stxname = 't_order_sta'; select e.stxname, length(d.stxdndistinct), substr(stxdndistinct, 1, 100) stxdndistinct
from pg_statistic_ext_data as d, pg_statistic_ext as e
where d.stxoid = e.oid and e.stxname = 't_order_sta'; -[ RECORD 1 ]-+-----------------------------------------------------------------------------------------------------
stxname | t_order_sta
length | 90177350
stxdndistinct | {"2, 3": 1, "2, 4": 1, "2, 5": 1, "2, 6": 1, "2, 7": 1, "2, 8": 1, "2, 9": 1, "2, 10": 1, "2, 11": 1查询数据表
执行之前的查询,分组列可以多达20个,执行计划使用HashAggregate了,OK!
explain (analyse,buffers )
select distinct dim01, dim02, dim03, dim04, dim05, dim06, dim07, dim08, dim09, dim10
, dim11, dim12, dim13, dim14, dim15, dim16, dim17, dim18, dim19, dim20
from t_order; HashAggregate (cost=970372.02..970372.03 rows=1 width=160) (actual time=9036.895..12889.744 rows=10000000 loops=1)
Group Key: dim01, dim02, dim03, dim04, dim05, dim06, dim07, dim08, dim09, dim10, dim11, dim12, dim13, dim14, dim15, dim16, dim17, dim18, dim19, dim20
Buffers: shared hit=370371
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=160) (actual time=0.010..699.935 rows=10000000 loops=1)
Buffers: shared hit=370371
Planning Time: 124.327 ms
Execution Time: 13232.085 ms查询数据表-加强
优化器获取的估值rows=1,所以,继续增加几个分组列,也可以使用HashAggregate。
explain (analyse,buffers )
select distinct dim01, dim02, dim03, dim04, dim05, dim06, dim07, dim08, dim09, dim10
, dim11, dim12, dim13, dim14, dim15, dim16, dim17, dim18, dim19, dim20
, dim21, dim22, dim23, dim24, dim25, dim26
from t_order; HashAggregate (cost=1120372.27..1120450.03 rows=7776 width=208) (actual time=11161.952..15726.475 rows=10000000 loops=1)
Group Key: dim01, dim02, dim03, dim04, dim05, dim06, dim07, dim08, dim09, dim10, dim11, dim12, dim13, dim14, dim15, dim16, dim17, dim18, dim19, dim20, dim21, dim22, dim23, dim24, dim25, dim26
Buffers: shared hit=370371
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=208) (actual time=0.009..702.706 rows=10000000 loops=1)
Buffers: shared hit=370371
Planning Time: 114.548 ms
Execution Time: 16070.944 ms
4、扩展统计-超限加强
如果分组的列数量非常大,可以将分组的列,分成若干个局部。每个局部单独建立扩展统计对象,然后参照“超限法”,产生统计值。这样可以满足内存允许下的不限数量的维度列的分组聚合需求。
--为数据表t_order创建了三个扩展统计对象,使用“超限法”更新统计值
explain (analyse,buffers )
select distinct dim01, dim02, dim03, dim04, dim05, dim06, dim07, dim08, dim09, dim10
, dim11, dim12, dim13, dim14, dim15, dim16, dim17, dim18, dim19, dim20
, dim21, dim22, dim23, dim24, dim25, dim26, dim17, dim28, dim29, dim30
from t_order;
HashAggregate (cost=1220372.45..1220372.46 rows=1 width=240) (actual time=12720.356..17644.089 rows=10000000 loops=1)
Group Key: dim01, dim02, dim03, dim04, dim05, dim06, dim07, dim08, dim09, dim10, dim11, dim12, dim13, dim14, dim15, dim16, dim17, dim18, dim19, dim20, dim21, dim22, dim23, dim24, dim25, dim26, dim17, dim28, dim29, dim30
Buffers: shared hit=370371
-> Seq Scan on t_order (cost=0.00..470371.17 rows=10000017 width=240) (actual time=0.013..3613.716 rows=10000000 loops=1)
Buffers: shared hit=370371
Planning Time: 1.353 ms
Execution Time: 17917.662 ms
六、可行性依据
突破扩展统计的数量限制
这个数量限制,只是在创建对象时起作用,他的目的,就是避免随列数增长,分析用时则指数增长。
建议通过语句的语法,可以实现优化组合的方式,减少组合的可能性,比如使用“()”来合并多列为一个单元。
统计信息值重复使用
由于统计元素的组合后的单元数过大,可以利用空闲时间,将常用的组合,预先计算。将计算结果存储在用户表,如果有新的数据表或分区产生,可以使用这个办法快速处理。
七、最后的话
优化器的作用是根据成本估值公式的计算结果,选择最佳的执行计划。公式需要以单利和多列统计数据。当缺失这些数据信息,优化器就会得出保守的执行计划,从而影响性能。希望今后,优化器可以推出激进模式,并可以固化查询的执行计划。
PostgreSQL 欺骗优化器之扩展统计信息的更多相关文章
- 手动purge优化器的统计信息与AWR快照,减少对sysaux表空间的占用
1.运行以下脚本,计算当前优化器统计信息和AWR快照表占用sysaux的空间 SQL> conn / as sysdba SQL> @?/rdbms/admin/awrinfo.sql 2 ...
- Oracle扩展的统计信息
我们在收集列的统计信息与直方图时,往往都是对某一列的收集.当谓词使用多个相关列时,会导致约束条件的冗余.这几个相关的列也被称作关联列.出现这种情况时,查询优化器也会做出不准确的判断.所以我们必须对这些 ...
- SQL Server统计信息:问题和解决方式
在网上看到一篇介绍使用统计信息出现的问题已经解决方式,感觉写的很全面. 在自己看的过程中顺便做了翻译. 因为本人英文水平有限,可能中间有一些错误. 假设有哪里有问题欢迎大家批评指正.建议英文好的直接看 ...
- 使用analyze命令统计信息
① 搜集和删除索引.表和簇的统计信息② 验证表.索引和簇的结构③ 鉴定表和簇和行迁移和行链接针对analyze的搜集和删除统计信息功能而言Oracle推荐使用DBMS_STATS包来代替analyze ...
- 数据库性能调优之始: analyze统计信息
摘要:本文简单介绍一下什么是统计信息.统计信息记录了什么.为什么要收集统计信息.怎么收集统计信息以及什么时候收集统计信息. 1 WHY:为什么需要统计信息 1.1 query执行流程 下图描述了Gau ...
- SQL Server 统计信息更新时采样百分比对数据预估准确性的影响
为什么要写统计信息 最近看到园子里有人写统计信息,楼主也来凑热闹. 话说经常做数据库的,尤其是做开发的或者优化的,统计信息造成的性能问题应该说是司空见惯. 当然解决办法也并非一成不变,“一招鲜吃遍天” ...
- MySQL 统计信息
200 ? "200px" : this.width)!important;} --> 介绍 数据库维护统计信息的目的主要是为了优化器进行更好的执行优化,首先统计信息是建立在 ...
- SQL Server 中统计信息直方图中对于没有覆盖到谓词预估以及预估策略的变化(SQL2012-->SQL2014-->SQL2016)
本位出处:http://www.cnblogs.com/wy123/p/6770258.html 统计信息写过几篇了相关的文章了,感觉还是不过瘾,关于统计信息的问题,最近又踩坑了,该问题虽然不算很常见 ...
- SQL Server 统计信息(Statistics)-概念,原理,应用,维护
前言:统计信息作为sql server优化器生成执行计划的重要参考,需要数据库开发人员,数据库管理员对其有一定的理解,从而合理高效的应用,管理. 第一部分 概念 统计信息(statistics):描述 ...
随机推荐
- 上线项目之局域网上线软件使用-----phpStudy
上面的图片是phpStudy的软件截图.那么你在哪里会下到呢?链接: https://pan.baidu.com/s/1lvX9jY_K6gGkMOqo76p4nA 提取码: h1it 复制这段内容后 ...
- SAP OOALV- 合计
TYPES: BEGIN OF ty_mara, srno LIKE adrc-name1, " Storing the total text matnr LIKE mara-matnr, ...
- 分布式机器学习:同步并行SGD算法的实现与复杂度分析(PySpark)
1 分布式机器学习概述 大规模机器学习训练常面临计算量大.训练数据大(单机存不下).模型规模大的问题,对此分布式机器学习是一个很好的解决方案. 1)对于计算量大的问题,分布式多机并行运算可以基本解决. ...
- Servlet 之 Http协议
请求消息数据格式 请求行 请求方式 请求url 请求协议或者版本 (GET /login.html HTTP/1.1) 请求头 请求头名称:请求头值 多个用逗号分隔 请求空行 空行分隔作 ...
- 动态树 — Euler_Tour_Tree
一般提到动态树,我们会不约而同的想到 LCT,这算是比较通用,实用,能力较为广泛的一种写法了.当然,掌握 LCT 就需要熟悉掌握 Splay 和各种操作和知识.ETT(中文常用称呼:欧拉游览树)是一种 ...
- 贝壳自动化测试平台sosotest 学习记录
手工测试VS自动化测试 用例执行: 手动执行 自动执行 是否需要些脚本: 需要 不需要 测试报告生成: 手动 自动 常见的测试技术 关键字驱动的测试框架 RobotFRamework 单元测试框架 自 ...
- 搭建企业级实时数据融合平台难吗?Tapdata + ES + MongoDB 就能搞定
摘要:如何打造一套企业级的实时数据融合平台?Tapdata 已经找到了最佳实践,下文将以 Tapdata 的零售行业客户为例,与您分享:基于 ES 和 MongoDB 来快速构建一套企业级的实时数 ...
- 0016:单源最短路径(dijkstra算法)
题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...
- C#/VB.NET 添加多行文本水印到Word文档
一般情况下,在Word中添加文字水印仅支持添加一个文本字样的水印,但在复杂的办公环境中,由于对不同文档的设计要求,需要在Word文档中添加平铺水印效果,即文档中的水印文字以多行多列分布的形式存在.本文 ...
- 第十五天python3 文件IO(一)
一.文件打开 open(path,flag[,encoding][,errors]) 参数说明: path:要打开文件的路径 flag:打开方式( r:以只读的方式打开文件,文件的描述符放在文件开头 ...