设一共有\(K\)个客户机,

中心服务器初始化模型参数,执行若干轮(round),每轮选取至少1个至多\(K\)个客户机参与训练,接下来每个被选中的客户机同时在自己的本地根据服务器下发的本轮(\(t\)轮)模型\(w_t\)用自己的数据训练自己的模型\(w^k_{t+1}\),上传回服务器。服务器将收集来的各客户机的模型根据各方样本数量用加权平均的方式进行聚合,得到下一轮的模型\(w_{t+1}\):

\[\begin{aligned}
& \qquad w_{t+1} \leftarrow \sum^K_{k=1} \frac{n_k}{n} w^k_{t+1} \qquad\qquad //n_k为客户机k上的样本数量,n为所有被选中客户机的总样本数量\\
\end{aligned}
\]

【伪代码】

\[\begin{aligned}
& 算法1:Federated\ Averaging算法(FedAvg)。 \\
& K个客户端编号为k;B,E,\eta分别代表本地的minibatch\ size,epochs,学习率learning\ rate \\
& \\
& 服务器执行:\\
& \quad 初始化w_0 \\
& \quad for \ 每轮t=1,2,...,do \\
& \qquad m \leftarrow max(C \cdot K,1) \qquad\qquad //C为比例系数 \\
& \qquad S_t \leftarrow (随机选取m个客户端) \\
& \qquad for \ 每个客户端k \in S_t 同时\ do \\
& \qquad \qquad w^k_{t+1} \leftarrow 客户端更新(k,w_t) \\
& \qquad w_{t+1} \leftarrow \sum^K_{k=1} \frac{n_k}{n} w^k_{t+1} \qquad\qquad //n_k为客户机k上的样本数量,n为所有被选中客户机的总样本数量\\
& \\
& 客户端更新(k,w): \qquad \triangleright 在客户端k上运行 \\
& \quad \beta \leftarrow (将P_k分成若干大小为B的batch) \qquad\qquad //P_k为客户机k上数据点的索引集,P_k大小为n_k \\
& \quad for\ 每个本地的epoch\ i(1\sim E) \ do \\
& \qquad for\ batch\ b \in \beta \ do \\
& \qquad \qquad w \leftarrow w-\eta \triangledown l(w;b) \qquad\qquad //\triangledown 为计算梯度,l(w;b)为损失函数\\
& \quad 返回w给服务器
\end{aligned}
\]

为了增加客户机计算量,可以在中心服务器做聚合(加权平均)操作前在每个客户机上多迭代更新几次。计算量由三个参数决定:

  • \(C\),每一轮(round)参与计算的客户机比例。
  • \(E(epochs)\),每一轮每个客户机投入其全部本地数据训练一遍的次数。
  • \(B(batch size)\),用于客户机更新的batch大小。\(B=\infty\)表示batch为全部样本,此时就是full-batch梯度下降了。

当\(E=1\ B=\infty\)时,对应的就是FedSGD,即每一轮客户机一次性将所有本地数据投入训练,更新模型参数。

对于一个有着\(n_k\)个本地样本的客户机\(k\)来说,每轮的本地更新次数为\(u_k=E\cdot \frac{n_k}{B}\)。

参考文献:

  1. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Proc. AISTATS, 2016, pp. 1273–1282.

联邦平均算法(Federated Averaging Algorithm,FedAvg)的更多相关文章

  1. 谷歌的网页排序算法(PageRank Algorithm)

    本文将介绍谷歌的网页排序算法(PageRank Algorithm),以及它如何从250亿份网页中捞到与你的搜索条件匹配的结果.它的匹配效果如此之好,以至于“谷歌”(google)今天已经成为一个被广 ...

  2. 联邦学习(Federated Learning)

    联邦学习简介        联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...

  3. 维特比算法(Viterbi Algorithm)

      寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states) 对于一个特殊的隐马尔科夫模型(HMM)及一个相应的观察序列,我们常常希望 ...

  4. 图像处理之泛洪填充算法(Flood Fill Algorithm)

    泛洪填充算法(Flood Fill Algorithm) 泛洪填充算法又称洪水填充算法是在很多图形绘制软件中常用的填充算法,最熟悉不过就是 windows paint的油漆桶功能.算法的原理很简单,就 ...

  5. 隐马尔科夫模型,第三种问题解法,维比特算法(biterbi) algorithm python代码

    上篇介绍了隐马尔科夫模型 本文给出关于问题3解决方法,并给出一个例子的python代码 回顾上文,问题3是什么, 下面给出,维比特算法(biterbi) algorithm 下面通过一个具体例子,来说 ...

  6. 图像处理------泛洪填充算法(Flood Fill Algorithm) 油漆桶功能

    泛洪填充算法(Flood Fill Algorithm) 泛洪填充算法又称洪水填充算法是在很多图形绘制软件中常用的填充算法,最熟悉不过就是 windows paint的油漆桶功能.算法的原理很简单,就 ...

  7. HMM隐马尔科夫算法(Hidden Markov Algorithm)初探

    1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...

  8. 一致性哈希算法(Consistent Hashing Algorithm)

    一致性哈希算法(Consistent Hashing Algorithm) 浅谈一致性Hash原理及应用   在讲一致性Hash之前我们先来讨论一个问题. 问题:现在有亿级用户,每日产生千万级订单,如 ...

  9. EM算法(Expectation Maximization Algorithm)

    EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...

随机推荐

  1. Docker安装与基本命令

    docker安装 Ubuntu 更新apt包索引 sudo apt-get update 更新apt包索引 sudo apt-get upgrade 安装docker sudo apt-get ins ...

  2. C# WinForm 设置按纽为透明,使用背景色

    今天开发登陆界面时,遇到一个窗体控制设置问题: 1.将按纽设置为透明: 2.并且使用背景图片的颜色: 3.并且需要当点击这个按纽时,仍然显示背景图片颜色: 4.去掉按纽边框显示线: 需要的效果如下: ...

  3. Error running 'App': Command line is too long. Shorten command line for App or also for Spring Boot default configuration.

    找到标签 <component name="PropertiesComponent">.在标签里加一行  : <property name="dynam ...

  4. java-IO异常处理

    以前的异常处理 public class Demo3 { public static void main(String[] args) { //提高fw的作用域 //变量定义的时候可以没有值,但是使用 ...

  5. java-注解相关

    注解 概念:说明程序的,给计算机看  注释:用文字描述程序 先了解一些怎么正常javadoc文档 1:给类或者方法添加doc注释 2:通过命令javadoc 执行 类.java文件 新建的类: /** ...

  6. ArrayList跟LinkedList的区别

    ArrayList和LinkedList都是实现list接口,它们不同如下: ArrayList是基于索引的数据接口,底层是数组.它可以以O(1)时间复杂度对元素进行随机访问.与此相对,linkedL ...

  7. 配置sublime text 3来编写Markdown

    如何使用sublime text 3编写Markdown  编写markdown的编辑器无论客户端还是在线的都有很多,这里将sublime text3作为markdown的编辑器,需要进行一些配置. ...

  8. 微信小程序wx.login()获取openid,附:前端+后端代码

    微信小程序开放了微信登录的api,无论是个人还是企业申请的小程序均可使用. 首先创建一个项目,把这些代码都清空,我们自己写! 然后,开始写了!首先index.wxml,写一个button用于发起登录 ...

  9. Codepen 每日精选(2018-4-16)

    按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以打开原始页面. 内容切换的交互效果https://codepen.io/jcoulterde... 报价卡片的交互效果ht ...

  10. IDEA安装配置Scala环境

    这里有详细步骤:windows上 IntelliJ IDEA安装scala环境 详细 初学