SPFA可能会被卡掉,能用dijkstra就别用SPFA,代码较长,但我已尽力做到解释,请耐心看下去,存储为邻接表存储。

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f//(宏定义一个很大的值,例如0x3f3f3f3f等)
using namespace std;
int n,m,cnt;//cnt 计数器(有cnt条边)
struct edge//结构体定义
{
int v,w,nxt;//v 目标点 w 边权 nxt 这条边的上一条边(遍历)
};
edge e[3000010];//存边(边表)
int dis[3001000];//记录起点到第x个点的距离
int h[1001000];//记录第x个点所发出的最后一条边
bool f[1001000];//判断是否在队列内
deque<int> q;//双端队列
void add(int,int,int);
void spfa()//SLF优化
{
for(int i=1;i<=n;++i)
{
dis[i]=inf;
}//初始化,也可以用memset()
dis[1]=0;//起点到自己的距离为0 (该题起点为1)
q.push_back(1);//起点入队
f[1]=1;//标志起点已入队
while(!q.empty())
{
int top=q.front();//取队首元素
q.pop_front();//踢出队列
int w=dis[top];//w 起点的值
f[top]=0;//代表该元素已出队
for(int i=h[top];i;i=e[i].nxt)//邻接表遍历每一条边
{
int v=e[i].v;//目标点
int di=e[i].w;//边权
if(dis[v]>w+di)//松弛操作
{
dis[v]=w+di;//更新起点到点v的值
if(!f[v])//判断是否入队,没入队便入队
{
if(!q.empty()&&dis[v]<dis[q.front()])//如果比队首元素小,从队首入队
{//这里一定要把!q.empty()放在前面,编译时它会从前往后读,如果把它放后面而队列又为空,dis[v]<dis[q.front()]调用时会RE
q.push_front(v);//入队操作
}
else q.push_back(v);//否则从队尾入队
f[v]=1;//标志已入队
}
}
}
}
}
int main()
{
memset(h,0,sizeof h);//数组初始化
memset(f,false,sizeof f);//数组初始化
scanf("%d%d",&n,&m);
for(int a,b,c,i=1;i<=m;++i)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c); //加边
add(b,a,c);//加边,如果是有向图,删掉这一步操作
}
spfa();//调用函数
printf("%d",dis[n]);//输出,根据题目要求,这里是输出1到n的最短距离
return 0;
}
void add(int u,int v,int w)
{
e[++cnt].v=v;//cnt 边的编号
e[cnt].w=w;
e[cnt].nxt=h[u];//指向上一条边
h[u]=cnt;//更新最后一条边
}

2022.7.8更新:

新增判断负环的写法和dfs写法

dfs写法判断负环更快,但求答案很慢

bfs队列写法求答案快,但判断负环很慢

根据题目情况来

bfs队列写法:

bool spfa()
{
for(rint i=1;i<=n;++i)
dis[i]=0x7ffffff;
dis[0]=0;
q.push_back(0);
vis[0]=true;
++in[0];//差记录入队次数
while(!q.empty())
{
int u=q.front();
q.pop_front();
vis[u]=false;
for(rint i=h[u];i;i=e[i].nxt)
{
int v=e[i].v;ll w=e[i].w;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v])
{
++in[v];
if(in[v]>=n+1) return false;//判断负环
if(!q.empty()&&dis[v]<dis[q.front()]) q.push_front(v);
else q.push_back(v);
vis[v]=true;
}
}
}
}
return true;
}

dfs写法:

void dfs_spfa(int u)
{
if(fg) return;
vis[u]=true;
for(rint i=h[u];i;i=e[i].nxt)
{
int v=e[i].v;
ll w=e[i].w;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(vis[v]==true)//如果这个点被访问过,就说明这是负环
{
fg=true;//打标记
return;
}
else dfs_spfa(v);
}
}
vis[u]=false;
}

SPFA算法(SLF优化)2022.7.8更新的更多相关文章

  1. 关于SPFA算法的优化方式

    关于SPFA算法的优化方式 这篇随笔讲解信息学奥林匹克竞赛中图论部分的求最短路算法SPFA的两种优化方式.学习这两种优化算法需要有SPFA朴素算法的学习经验.在本随笔中SPFA朴素算法的相关知识将不予 ...

  2. spfa的SLF优化

    spfa的SLF优化就是small label first 优化,当加入一个新点v的时候如果此时的dis[v]比队首dis[q.front()]还要小的话,就把v点加入到队首,否则把他加入到队尾,因为 ...

  3. HDU4725(KB4-P SPFA+LLL+SLF优化)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  4. 并不对劲的图论专题(三):SPFA算法的优化

    1.bzoj1489-> 这是个新套路. 我们希望找到最小的x,那么可以二分x,然后判断是否存在圈的边权的平均值小于等于x. 设圈的边权依次为w1,w2,w3,…,wk,平均值为p, 则有p= ...

  5. 《SPFA算法的优化及应用》——姜碧野(学习笔记)

    一.核心性质:三角不等式.最短路满足d[v]<=d[u]+w(u,v) 二.SPFA两种实现: 常见的是基于bfs的,这是直接对bellman-ford用队列维护.根据最短路的长度最长为(n-1 ...

  6. 蓝书3.3 SPFA算法的优化

    T1 最小圈 bzoj 1486 题目大意: 一个环的权值平均值为定义为一个这个环上所有边的权值和除以边数 求最小的环的权值平均值 思路: 二分一个值 把所有边减去这个值 判断是否有负环 #inclu ...

  7. 队列优化dijsktra(SPFA)的玄学优化

    转载:大佬博客 最近想到了许多优化spfa的方法,这里想写个日报与大家探讨下 前置知识:spfa(不带任何优化) 由于使用较多 STLSTL ,本文中所有代码的评测均开启 O_2O2​ 优化 对一些数 ...

  8. SPFA算法的SLF优化 ——loj#10081. 「一本通 3.2 练习 7」道路和航线

    今天做到一道最短路的题,原题https://loj.ac/problem/10081 题目大意为给一张有n个顶点的图,点与点之间有m1条道路,m2条航线,道路是双向的,且权值非负,而航线是单向的,权值 ...

  9. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

随机推荐

  1. Docker容器网络-基础篇

    开源Linux 一个执着于技术的公众号 Docker的技术依赖于Linux内核的虚拟化技术的发展,Docker使用到的网络技术有Network Namespace.Veth设备对.Iptables/N ...

  2. python appium server代码启动和关闭遇到的坑

    第一次使用博客,小白级,互相交流,有说的不对的地方欢迎来喷!!! 自动化的目的就是减少人工成本,如果每次跑自动化用例时都要手动起appium客户端,太费事了~~故,将appium server的调起和 ...

  3. 华为OPS,自定义命令,动态执行命令

     OPS     开放可编程系统OPS(Open Programmability System)是指设备通过提供统一的应用程序接口API(Application Programming Interfa ...

  4. 随笔总结:8086CPU的栈顶超界问题

    我们学习编程都知道栈的超界限问题是非常严重的问题,他可能会覆盖掉其他数据,并且我们不知道这个数据是我们自己保存的用于其他用途的数据还是系统的数据,这样常常容易引发一连串的问题. 在学习汇编的时候,我们 ...

  5. MongoDB 安全认证

    每日一句 Sometimes your whole life boils down to one insane move. 人一生中出人头地的机会不多,一旦有了一定要抓住! 概述 默认情况下,Mong ...

  6. SQL中把汉字转换拼音码

    思路:在SQL中创建一个函数fn_GetPy(),函数的输入参数是一个汉字字符串,返回值是拼音码字符串. 创建函数语句: CREATE function fn_GetPy(@str nvarchar( ...

  7. Spring Ioc源码分析系列--@Autowired注解的实现原理

    Spring Ioc源码分析系列--@Autowired注解的实现原理 前言 前面系列文章分析了一把Spring Ioc的源码,是不是云里雾里,感觉并没有跟实际开发搭上半毛钱关系?看了一遍下来,对我的 ...

  8. Weakmap详解

    先看一个例子 let obj = { name: 'toto' } // { name: 'toto' }这个对象能够被读取到,因为obj这个变量名有对它的引用 // 将引用覆盖掉 obj = nul ...

  9. Python中的逻辑表达式

    首先要明确一点,Python的逻辑运算符,可以用来操作任何类型的表达式(不局限于Bool类型),且运算后的结果也不一定是Bool类型的,而是其左右其中一个表达式的值 表达式1 and 表达式2 pyt ...

  10. go程序添加远程调用tcpdump功能

    最近开发的telemetry采集系统上线了.听起来高大上,简单来说就是一个grpc/udp服务端,用户的机器(路由器.交换机)将它们的各种统计数据上报采集.整理后交后端的各类AI分析系统分析.目前华为 ...