【BZOJ10492】[NOI2007]货币兑换Cash

Description

小Y最近在一家金券交易所工作。该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下简称B券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 K 天中 A券 和 B券 的价值分别为 AK 和 BK(元/单位金券)。为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法。比例交易法分为两个方面:(a)卖出金券:顾客提供一个 [0,100] 内的实数 OP 作为卖出比例,其意义为:将 OP% 的 A券和 OP% 的 B券 以当时的价值兑换为人民币;(b)买入金券:顾客支付 IP 元人民币,交易所将会兑换给用户总价值为 IP 的金券,并且,满足提供给顾客的A券和B券的比例在第 K 天恰好为 RateK;例如,假定接下来 3 天内的 Ak、Bk、RateK 的变化分别为:
假定在第一天时,用户手中有 100元 人民币但是没有任何金券。用户可以执行以下的操作:
注意到,同一天内可以进行多次操作。小Y是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经知道了未来N天内的A券和B券的价值以及Rate。他还希望能够计算出来,如果开始时拥有S元钱,那么N天后最多能够获得多少元钱。

Input

输入第一行两个正整数N、S,分别表示小Y能预知的天数以及初始时拥有的钱数。接下来N行,第K行三个实数AK、BK、RateK,意义如题目中所述。对于100%的测试数据,满足:0<AK≤10;0<BK≤10;0<RateK≤100;MaxProfit≤10^9。
【提示】
1.输入文件可能很大,请采用快速的读入方式。
2.必然存在一种最优的买卖方案满足:
每次买进操作使用完所有的人民币;
每次卖出操作卖出所有的金券。

Output

只有一个实数MaxProfit,表示第N天的操作结束时能够获得的最大的金钱数目。答案保留3位小数。

Sample Input

3 100
1 1 1
1 2 2
2 2 3

Sample Output

225.000

HINT

题解:好吧该啃的硬骨头还是要啃的~

如果感觉像斜率优化,那么我们来试着列方程吧!显然,我们的所有操作肯定是:倾巢买入-倾巢卖出-倾巢买入...那么DP方程如下:

设f[i]表示在第i天,将手中所有金券都卖完,所能拥有的最多钱数,那么

$f[i]=f[i-1]\\f[i]=\min(f[j]/(a[j]\times rate[j]+b[j])*(a[i]*rate[j]+b[i]))$

将括号拆开

$f[i]=a[i]*f[j]/(a[j]\times rate[j]+b[j])*rate[j]+b[i]*f[j]/(a[j]\times rate[j]+b[j])$

感觉不太好看,设$g[i]=f[j]/(a[j]\times rate[j]+b[j])$试试?如果还是感觉不好看,因为a[i],b[i]都是常数,两边都除个a[i]试试?是不是好看多了?

$g[j]*rate[j]=-{b[i]\over a[i]}*g[j]+{f[i]\over a[i]}$

看起来推式子好像挺简单的,但是x和k都不单调啊,于是我们就想找出一种办法使得我们永远都只需要用一些单调的x来更新一些单调的k,这就涉及到排序,怎么办?cdq分治呗!

注意:我们整个分治过程会想办法让某段区间分别满足:按x升序,按编号(时间)升序,按k降序,下面请留意。

具体做法:先将正个序列按k降序排序,然后开始分治。在分治区间[l,r]时,我们先按时间进行归并,将时间在[l,mid]的放在左边,然后递归处理左区间,在处理左区间的结束时候顺便按x升序排个序(一会再说)。现在我们来处理区间[l,r],发现此时的[l,mid]满足x升序,[mid+1,r]满足k降序,岂不是正好可以用斜率优化?然后,我们递归处理右区间(也顺便按x升序排个序),最后,左右区间都已经按x升序排完序了,归并起来就好了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn=100010;
struct node
{
double A,B,f,g,k,rate,org;
double x(){return g;}
double y(){return g*rate;}
}p[maxn],pp[maxn];
int n;
int q[maxn],h,t;
double ans;
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
bool cmpg(node a,node b)
{
return a.g<b.g;
}
bool cmpk(node a,node b)
{
return a.k>b.k;
}
double getk(int a,int b)
{
if(fabs(p[a].x()-p[b].x())<1e-12) return -2147483647.0;
else return (p[a].y()-p[b].y())/(p[a].x()-p[b].x());
}
void solve(int l,int r)
{
if(l==r)
{
p[l].f=max(p[l].f,p[l-1].f);
p[l].g=p[l].f/(p[l].A*p[l].rate+p[l].B);
return ;
}
int mid=l+r>>1,i,j,h1=l,h2=mid+1;
double mf=0;
for(i=l;i<=r;i++)
{
if(p[i].org<=mid) pp[h1++]=p[i];
else pp[h2++]=p[i];
}
for(i=l;i<=r;i++) p[i]=pp[i];
solve(l,mid);
h=1,t=0;
for(i=l;i<=mid;i++)
{
while(h<t&&getk(q[t],q[t-1])<getk(i,q[t])) t--;
q[++t]=i;
mf=max(mf,p[i].f);
}
for(i=mid+1;i<=r;i++)
{
while(h<t&&getk(q[h+1],q[h])>p[i].k) h++;
p[i].f=max(p[i].f,p[q[h]].f/(p[q[h]].A*p[q[h]].rate+p[q[h]].B)*(p[i].A*p[q[h]].rate+p[i].B));
p[i].f=max(p[i].f,mf);
p[i].g=p[i].f/(p[i].A*p[i].rate+p[i].B);
}
solve(mid+1,r);
for(h1=l,h2=mid+1,i=l;i<=r;i++)
{
if(h1<=mid&&(h2>r||p[h1].x()<p[h2].x())) pp[i]=p[h1++];
else pp[i]=p[h2++];
}
for(i=l;i<=r;i++) p[i]=pp[i];
}
int main()
{
scanf("%d%lf",&n,&p[1].f);
int i;
for(i=1;i<=n;i++)
{
scanf("%lf%lf%lf",&p[i].A,&p[i].B,&p[i].rate);
p[i].k=-p[i].B/p[i].A,p[i].org=i;
}
sort(p+1,p+n+1,cmpk);
solve(1,n);
for(i=1;i<=n;i++) ans=max(ans,p[i].f);
printf("%.3lf",ans);
return 0;
}

【BZOJ1492】[NOI2007]货币兑换Cash 斜率优化+cdq分治的更多相关文章

  1. [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5838  Solved: 2345[Submit][Sta ...

  2. [BZOJ1492] [NOI2007]货币兑换Cash 斜率优化+cdq/平衡树维护凸包

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5907  Solved: 2377[Submit][Sta ...

  3. BZOJ1492: [NOI2007]货币兑换Cash 【dp + CDQ分治】

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 5391  Solved: 2181 [Submit][S ...

  4. BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)

    BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...

  5. 【BZOJ 1492】 [NOI2007]货币兑换Cash 斜率优化DP

    先说一下斜率优化:这是一种经典的dp优化,是OI中利用数形结合的思想解决问题的典范,通常用于优化dp,有时候其他的一些决策优化也会用到,看待他的角度一般有两种,但均将决策看为二维坐标系上的点,并转化为 ...

  6. 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)

    题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...

  7. BZOJ 1492: [NOI2007]货币兑换Cash 斜率优化 + splay动态维护凸包

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  8. [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化)

    [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化) 题面 分析 dp方程推导 显然,必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有 ...

  9. BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治

    BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...

随机推荐

  1. 自助采样法 bootstrap 与 0.632

  2. 查看Linux服务器CPU使用率、内存使用率、磁盘空间占用率、负载情况

    [root@server script]# vi monitor.py #!/usr/bin/env python # -*- coding:utf-8 -*- #Author: nulige imp ...

  3. 泳池水面fresnel 的近似替代

    vs float4 ep = TBMultiply(ModelViewMatrix, FinalPosition); DistFromEye.x = TBSaturate( 10.0 + ep.z / ...

  4. memcache运行机制(转)

    网上其实有很多文章说明了memcached是如何运作的,特别是底层的内存分配是如何运作的.我参考过很多资料,比较有启发意义的有几个: 首先是官方的英文资料,虽然文章太多.很难看懂,我个人觉得说得也不是 ...

  5. Java之基本类库学习

    JAVA基本类库: (一),输入相关 main(String[] args):设置输入参数 输入类:Scanner:Scanner sc=new Scanner(System.in); (二),系统相 ...

  6. 性能测试篇 :Jmeter监控服务器性能

    转载:http://www.cnblogs.com/chengtch/p/6079262.html jmeter也可以像loadrunner一样监控服务器CPU.内存等性能参数,不过需要安装一些插件 ...

  7. angular controller的一些用法

    最近公司的项目是es6+angular.其中的代码格式还在逐步摸索中.感谢今天同事每天帮我解惑. 今天简单梳理一下controller的一些用法 之前看书所熟知的都是 这是最普通的一种 //html ...

  8. JAVA Eclipse如何设置编程环境字体

    窗口-首选项-常规-外观-颜色和字体,文本字体  

  9. STL学习笔记(数值算法)

    运用数值算法之前必须先加入头文件<numeric> 加工运算后产生结果 1.对序列进行某种运算 T accumulate(InputIterator beg,InputIterator e ...

  10. 工作总结 sql 中过滤条件 中的 (where中的) and

    总结: 在where 后面做过滤的时候 如果  有 字段1 必须满足某种值   字段2 要满足 某种或某值的时候  直接   and 字段1 = ‘a’   and    字段2 = ‘b’ or 字 ...