【BZOJ2427】[HAOI2010] 软件安装(缩点+树形DP)
大致题意: 有\(N\)个软件,每个软件有至多一个依赖以及一个所占空间大小\(W_i\),只有当一个软件的直接依赖和所有的间接依赖都安装了,它才能正常工作并造成\(V_i\)的价值。求在容量为\(M\)时的最大价值和。
大致思路
比较显然是树上背包。
但是,这题中可能会出现环,因此我们要先用\(Tarjan\)来缩点。
还要注意,缩完点后的图是一个森林,因此我们需要再人为建一个根,将其向每棵树的根连一条边,这样就可以直接树形\(DP\)了。
主要是注意细节啊。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define Gmax(x,y) (x<(y)&&(x=(y)))
#define Gmin(x,y) (x>(y)&&(x=(y)))
#define abs(x) ((x)<0?-(x):(x))
#define swap(x,y) (x^=y^=x^=y)
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define INF 1000000000
#define N 100
#define M 500
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
using namespace std;
int n,m,ee,fa[N+5],w[N+5],v[N+5],lnk[N+5],deg[N+5];
struct edge
{
int to,nxt;
}e[N+5];
class Class_FIO
{
private:
#define Fsize 100000
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,Fsize,stdin),A==B)?EOF:*A++)
#define pc(ch) (void)(FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int f,FoutSize,Top;char ch,Fin[Fsize],*A,*B,Fout[Fsize],Stack[Fsize];
public:
Class_FIO() {A=B=Fin;}
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void write(int x) {if(!x) return pc('0');x<0&&(pc('-'),x=-x);while(x) Stack[++Top]=x%10+48,x/=10;while(Top) pc(Stack[Top--]);}
inline void clear() {fwrite(Fout,1,FoutSize,stdout),FoutSize=0;}
}F;
class Class_Tarjan//Tarjan缩点
{
private:
int d,Top,dfn[N+5],low[N+5],Stack[N+5],InStack[N+5];
public:
int cnt,col[N+5],Weight[N+5],Val[N+5];
inline bool Vis(int x) {return dfn[x];}
inline void Solve(int x,int lst=0)
{
register int i;
for(dfn[x]=low[x]=++d,InStack[Stack[++Top]=x]=1,i=lnk[x];i;i=e[i].nxt)
{
if(!dfn[e[i].to]) Solve(e[i].to,x),Gmin(low[x],low[e[i].to]);
else if(InStack[e[i].to]) Gmin(low[x],dfn[e[i].to]);
}
if(dfn[x]^low[x]) return;
Weight[col[x]=++cnt]=w[x],Val[cnt]=v[x],InStack[x]=0;
while(Stack[Top]^x) Weight[col[Stack[Top]]=cnt]+=w[Stack[Top]],Val[cnt]+=v[Stack[Top]],InStack[Stack[Top--]]=0;
--Top;
}
inline void ReBuild()//重新建图
{
register int i;
for(ee=0,i=1;i<=n;++i) lnk[i]=0;//清空原先的边
for(i=1;i<=n;++i) col[fa[i]]^col[i]&&(add(col[fa[i]],col[i]),++deg[col[i]]);//建新边
for(i=1;i<=cnt;++i) !deg[i]&&add(0,i);//将0号节点向每棵树的根连一条边
}
}T;
class Class_TreeDP//树形DP求解树上背包
{
private:
int f[N+5][M+5],g[N+5];
inline void DP(int x)
{
register int i,j,k,lim;
for(i=g[x]=T.Weight[x];i<=m;++i) f[x][i]=T.Val[x];
for(i=lnk[x];i;i=e[i].nxt) for(DP(e[i].to),g[x]+=g[e[i].to],j=min(m,g[x]);j>=T.Weight[x];--j)
for(k=1,lim=min(j-T.Weight[x],g[e[i].to]);k<=lim;++k) Gmax(f[x][j],f[x][j-k]+f[e[i].to][k]);
}
public:
inline void Solve() {DP(0),F.write(f[0][m]);}
}TreeDP;
int main()
{
register int i;
for(F.read(n),F.read(m),i=1;i<=n;++i) F.read(w[i]);
for(i=1;i<=n;++i) F.read(v[i]);
for(i=1;i<=n;++i) F.read(fa[i]),fa[i]&&add(fa[i],i);
for(i=1;i<=n;++i) if(!T.Vis(i)) T.Solve(i);
return T.ReBuild(),TreeDP.Solve(),F.clear(),0;
}
【BZOJ2427】[HAOI2010] 软件安装(缩点+树形DP)的更多相关文章
- bzoj2427 [HAOI2010]软件安装——缩点+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2427 今天的考试题...好不容易一次写对了树形DP,却没发现有环的情况... 发现自己 ta ...
- 洛谷 P2515 [HAOI2010]软件安装(缩点+树形dp)
题面 luogu 题解 缩点+树形dp 依赖关系可以看作有向边 因为有环,先缩点 缩点后,有可能图不联通. 我们可以新建一个结点连接每个联通块. 然后就是树形dp了 Code #include< ...
- [bzoj2427][HAOI2010]软件安装——强连通分量+树形DP
题目大意 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- bzoj 2427: [HAOI2010]软件安装【tarjan+树形dp】
一眼最大权闭合子图,然后开始构图,画了画之后发现我其实是个智障网络流满足不了m,于是发现正确的打开方式应该是一眼树上dp 然后仔细看了看性质,发现把依赖关系建成图之后是个奇环森林,这个显然不能直接dp ...
- [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)
2427: [HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1987 Solved: 791[Submit][Statu ...
- bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)
2427: [HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1053 Solved: 424[Submit][Statu ...
- BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- [BZOJ2427]:[HAOI2010]软件安装(塔尖+DP)
题目传送门 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用${W}_{i}$的磁盘空间,它的价值为${V}_{i}$.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件 ...
- 题解【bzoj2427 [HAOI2010]软件安装】
Description 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到一台磁盘容量为\(M\)计算 ...
- bzoj2427: [HAOI2010]软件安装
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
随机推荐
- 在 CentOS7 安装 ELK【转】
ELK是一个成熟的日志系统,主要功能有收集.分析.检索,详细见 elastic官网. 本文主要介绍如何在CentOS7下安装最新版本的ELK,当然现在docker已经有完全配置成功的elk容器,安装配 ...
- 获取.net应用的版本及依赖信息
在制作打包安装器时,通常要获取要安装的程序的名称.版本.说明,以及依赖的版本信息,经过翻阅MSDN,stackoverflow,终于搞定了. 1. 获取应用的依赖信息 var ans = System ...
- SQL 日期函数转换
1.转换函数 与date操作关系最大的就是两个转换函数:to_date(),to_char() to_date() 作用将字符类型按一定格式转化为日期类型: 具体用法:to_date('2004-11 ...
- vuex和localStorage/sessionStorage 区别
1.最重要的区别:vuex存储在内存,localstorage则以文件的方式存储在本地 2.应用场景:vuex用于组件之间的传值,(响应式的),localstorage则主要用于不同页面之间的传值(其 ...
- DB2 触发器使用1
本文基于多篇博文整理而来,目的是较全面的学会使用DB2触发器,后期再整理复杂的使用场景,看完本文应该能够自己创建一个基本的触发器. 1.什么是触发器当一个指定的 SQL 操作(如 DELETE,INS ...
- 打印BroadcastReceiver的所有接受者
Android中收到短信等事件都是通过广播发送给应用程序的,手机卫士等程序都是通过注册高优先级的BroadcastReceiver来实现短信防火墙等功能.对于我们来说很想知道系统中都有哪些程序注册了B ...
- F. Gourmet and Banquet(贪心加二分求值)
题目链接:http://codeforces.com/problemset/problem/589/F A gourmet came into the banquet hall, where the ...
- Solr7.x介绍安装和配置(单机版)
之前学的是4.x,然后一看官网,奶奶的都7.x了.于是查了一番资料..... 1)下载和安装 wget http://mirror.bit.edu.cn/apache/lucene/solr/7.3. ...
- Android模拟器使用SD卡
在Android的应用开发中经常要用到与SD卡有关的调试,本文就是介绍关于在Android模拟器中SD卡的使用 一. 准备工作 在介绍之前首先做好准备工作,即配好android的应用开发环境 ...
- maven相关说明,以及使用Testng相关
配置Apache Maven Apache Maven使用本身的配置和建立的项目位于许多地方: MAVEN_OPTS环境变量: 该变量包含用于启动运行Maven的JVM的参数,可用于向Maven提供其 ...