Circle and Points
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 8346   Accepted: 2974
Case Time Limit: 2000MS

Description

You are given N points in the xy-plane. You have a circle of radius one and move it on the xy-plane, so as to enclose as many of the points as possible. Find how many points can be simultaneously enclosed at the maximum. A point is considered enclosed by a circle when it is inside or on the circle. 
 
Fig 1. Circle and Points

Input

The input consists of a series of data sets, followed by a single line only containing a single character '0', which indicates the end of the input. Each data set begins with a line containing an integer N, which indicates the number of points in the data set. It is followed by N lines describing the coordinates of the points. Each of the N lines has two decimal fractions X and Y, describing the x- and y-coordinates of a point, respectively. They are given with five digits after the decimal point.

You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0 <= Y <= 10.0. No two points are closer than 0.0001. No two points in a data set are approximately at a distance of 2.0. More precisely, for any two points in a data set, the distance d between the two never satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a data set are simultaneously very close to a single circle of radius one. More precisely, let P1, P2, and P3 be any three points in a data set, and d1, d2, and d3 the distances from an arbitrarily selected point in the xy-plane to each of them respectively. Then it never simultaneously holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3).

Output

For each data set, print a single line containing the maximum number of points in the data set that can be simultaneously enclosed by a circle of radius one. No other characters including leading and trailing spaces should be printed.

Sample Input

3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
0

Sample Output

2
5
5
11

Source

题意:给出n个点,问用一个单位圆最多能覆盖多少个点。
思路:把每一个点扩展成单位圆,相交圆会形成相交弧,只需要判断弧被覆盖的最大次数即可,因为弧如果被覆盖,那么以弧上的点为圆心,必然也能覆盖到原来点。

N^2枚举,保存每段弧的极角范围及端点方向,然后按上端点在前,下端点在后,从大到小对极角排序,从头扫描一遍。

若经过上端点:ans++ 否则:ans--,取ans最大值即可。

代码:

 //#include"bits/stdc++.h"
#include<sstream>
#include<iomanip>
#include"cstdio"
#include"map"
#include"set"
#include"cmath"
#include"queue"
#include"vector"
#include"string"
#include"cstring"
#include"time.h"
#include"iostream"
#include"stdlib.h"
#include"algorithm"
#define db double
#define ll long long
#define vec vectr<ll>
#define mt vectr<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i, n) for(int i=0;i<n;i++)
const int N = 1e4+ ;
const int mod = 1e9 + ;
const int MOD = mod - ;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
struct P
{
db x,y;
db ang;
bool in;
};
P a[N],b[N];
db dis(P a,P b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int cmp(P a,P b){
if(a.ang==b.ang) return a.in>b.in;//上端点在前
return a.ang>b.ang;
}
int main()
{
int n;
while(scanf("%d",&n)==,n)
{
int ans=;
for(int i=;i<=n;i++) cd(a[i].x),cd(a[i].y);
for(int i=;i<=n;i++)
{
int p=;
for(int j=;j<=n;j++){
if(i==j||dis(a[i],a[j])>2.0+eps) continue;
db ang=atan2(a[i].x-a[j].x,a[i].y-a[j].y);//i于j的极角
db tha=acos(dis(a[i],a[j])/2.0);//极角波动范围
b[p].ang=ang+tha+*PI,b[p++].in=;//上端点
b[p].ang=ang-tha+*PI,b[p++].in=;//下端点
}
sort(b,b+p,cmp);
int tmp=;
for(int j=;j<p;j++){
if(b[j].in==) tmp++;
else tmp--;
ans=max(tmp,ans);
}
}
pi(ans);
}
return ;
}
 

POJ 1981 最大点覆盖问题(极角排序)的更多相关文章

  1. poj 1696 Space Ant (极角排序)

    链接:http://poj.org/problem?id=1696 Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  2. POJ 2280 Amphiphilic Carbon Molecules 极角排序 + 扫描线

    从TLE的暴力枚举 到 13313MS的扫描线  再到 1297MS的简化后的扫描线,简直感觉要爽翻啦.然后满怀欣喜的去HDU交了一下,直接又回到了TLE.....泪流满面 虽说HDU的时限是2000 ...

  3. POJ 1696 Space Ant 【极角排序】

    题意:平面上有n个点,一只蚂蚁从最左下角的点出发,只能往逆时针方向走,走过的路线不能交叉,问最多能经过多少个点. 思路:每次都尽量往最外边走,每选取一个点后对剩余的点进行极角排序.(n个点必定能走完, ...

  4. POJ 1696 Space Ant(极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2489   Accepted: 1567 Descrip ...

  5. POJ 2007 Scrambled Polygon [凸包 极角排序]

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8636   Accepted: 4105 ...

  6. poj 2007 凸包构造和极角排序输出(模板题)

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10841   Accepted: 508 ...

  7. poj 2007 Scrambled Polygon(极角排序)

    http://poj.org/problem?id=2007 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6701   A ...

  8. Space Ant--poj1696(极角排序)

    http://poj.org/problem?id=1696 极角排序是就是字面上的意思   按照极角排序 题目大意:平面上有n个点然后有一只蚂蚁他只能沿着点向左走  求最多能做多少点 分析:  其实 ...

  9. 简单几何(极角排序) POJ 2007 Scrambled Polygon

    题目传送门 题意:裸的对原点的极角排序,凸包貌似不行. /************************************************ * Author :Running_Time ...

随机推荐

  1. maven课程 项目管理利器-maven 3-8 maven依赖传递 4星

    本节主要讲了 1 maven依赖传递 本地项目路径:F:\xiangmu3\Xin\FuQiang\maven\code 2 maven排除依赖 3 注意事项 4 零散知识点 1 maven依赖传递 ...

  2. Hibernate课程 初探一对多映射4-3 测试--信息查询

    建立双向一对多关系,既可以由一方查询多方信息,同样可以由多方查询一方信息 demo: //查询学生所在班级 public static void showGidByStudent(){ Session ...

  3. C++ Knowledge series Conversion & Constructor & Destructor

    Everything has its lifecycle, from being created to disappearing. Pass by reference instead of pass ...

  4. python if else while for

    1 getpass模块 设置密码不显示明文 用户名和密码输入程序: import getpass username = input("username:") password = ...

  5. selenium googleDrive

    http://chromedriver.storage.googleapis.com/index.html?path=2.1/下载地址 把googledriver.exe 放到google浏览器下目录 ...

  6. Python ssh连接Linux服务器报Incompatible ssh peer (no acceptable kex algorithm) 解决方法

    python通过ssh连接linux服务器,部分服务器出现如下异常 03:50:48.725 FAIL ftp operation failed, Incompatible ssh peer (no ...

  7. 使用BaiDu Java Script Web Api 在Web开发中嵌入地图使用步骤

    前言 很多做企业网站的朋友,都喜欢有一个关于我们.联系我们的栏目,那么这个栏目放什么内容才能饱满那,只有放个地图才显得有点高大上. 一.产生并复制访问Api的密钥(AK) 1.首先我们需要注册一个百度 ...

  8. IOS开发入门你们准备好了吗?

    我们对于IOS的了解最多应该就是苹果手机独有的IOS系统吧,也可以说是单任务管理器,这可以说是一个优势,但是随着技术提升IOS慢慢有被超越的趋势,但是很多大公司还是需要这方面的开发人才,那么今天我们来 ...

  9. IOS instancetype的使用好处

    instancetype的类型表示上,跟id一样,可以表示任何对象类型 instancetype只能用在返回值类型上,不能像 id 一样用在参数类型上 instancetype 比 id 多一个好处 ...

  10. win10启动项添加方法

    1.添加或删除启动文件夹下的快捷方式实现开机自启动 我们可以直接将应用软件的快捷方式拖到启动文件夹里,下次开机时便会自动运行这些软件. 不需要开机启动某些软件了就将启动文件夹里的该软件的快捷方式删除掉 ...