同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,我先限定一下本文的上下文。
本文讨论的背景是Linux环境下的network IO。
本文最重要的参考文献是Richard Stevens的“UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking ”,6.2节“I/O Models ”,Stevens在这节中详细说明了各种IO的特点和区别,如果英文够好的话,推荐直接阅读。Stevens的文风是有名的深入浅出,所以不用担心看不懂。本文中的流程图也是截取自参考文献。

Stevens在文章中一共比较了五种IO Model:
    blocking IO
    nonblocking IO
    IO multiplexing
    signal driven IO
    asynchronous IO
由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

再说一下IO发生时涉及的对象和步骤。
对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:
 1 等待数据准备 (Waiting for the data to be ready)
 2 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)
记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

blocking IO 
在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

non-blocking IO

linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。
所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

IO multiplexing

IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)
在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

Asynchronous I/O

linux下的asynchronous IO其实用得很少。先看一下它的流程:

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
    A synchronous I/O operation causes the requesting process to be blocked until that I/O operationcompletes;
    An asynchronous I/O operation does not cause the requesting process to be blocked;
 
两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

各个IO Model的比较如图所示:

经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

最后,再举几个不是很恰当的例子来说明这四个IO Model:
有A,B,C,D四个人在钓鱼:
A用的是最老式的鱼竿,所以呢,得一直守着,等到鱼上钩了再拉杆;
B的鱼竿有个功能,能够显示是否有鱼上钩,所以呢,B就和旁边的MM聊天,隔会再看看有没有鱼上钩,有的话就迅速拉杆;
C用的鱼竿和B差不多,但他想了一个好办法,就是同时放好几根鱼竿,然后守在旁边,一旦有显示说鱼上钩了,它就将对应的鱼竿拉起来;
D是个有钱人,干脆雇了一个人帮他钓鱼,一旦那个人把鱼钓上来了,就给D发个短信。

IO - 同步,异步,阻塞,非阻塞 (转帖:http://blog.csdn.net/historyasamirror/article/details/5778378)的更多相关文章

  1. [转帖] select、poll、epoll之间的区别总结[整理] + 知乎大神解答 https://blog.csdn.net/qq546770908/article/details/53082870 不过图都裂了.

    select.poll.epoll之间的区别总结[整理] + 知乎大神解答 2016年11月08日 15:37:15 阅读数:2569 http://www.cnblogs.com/Anker/p/3 ...

  2. python并发编程之IO模型 同步 异步 阻塞 非阻塞

    IO浅谈 首先 我们在谈及IO模型的时候,就必须要引入一个“操作系统”级别的调度者-系统内核(kernel),而阻塞非阻塞是跟进程/线程严密相关的,而进程/线程又是依赖于操作系统存在的,所以自然不能脱 ...

  3. 【转载】高性能IO设计 & Java NIO & 同步/异步 阻塞/非阻塞 Reactor/Proactor

    开始准备看Java NIO的,这篇文章:http://xly1981.iteye.com/blog/1735862 里面提到了这篇文章 http://xmuzyq.iteye.com/blog/783 ...

  4. 深入了解几种IO模型(阻塞非阻塞,同步异步)

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/zk3326312/article/details/79400805一般来说,Linux下系统IO主要 ...

  5. Python番外之 阻塞非阻塞,同步与异步,i/o模型

    1. 概念理解 在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)四种调用方式: 同步/异步主要针对C端: 同步:      所谓同步,就 ...

  6. 008. 阻塞&非阻塞、同步&异步

    阻塞 非阻塞:关注的对象是调用者: 阻塞:调用者发起调用后,处于等待状态,直到该调用有返回: 非阻塞:调用者发起调用后,不需要等待返回,可以往下执行: 同步 异步:  关注的对象是被调用者: 同步:服 ...

  7. (转)NIO与AIO,同步/异步,阻塞/非阻塞

    原文地址: http://www.cnblogs.com/enjoy-ourselves/p/3793771.html 1.flip(),compact(),与clear()的使用 flip()内部实 ...

  8. NIO与AIO,同步/异步,阻塞/非阻塞

    1.flip(),compact(),与clear()的使用 flip()内部实现,先将limit设为当前位置,再将缓冲区的postion设为0,所以是为将缓冲区的数据写出到其它通道或者get()作准 ...

  9. C# 【一】进程 , 线程 , 微线程 , 同步 , 异步 , 并发 , 并行 , 阻塞 , 非阻塞

    一 理解篇 前言 本文仅仅用作借鉴使用,作者刚入行不久,所以请不小心看到这篇文章的朋友,手下留情. 本文以小故事的形式进行叙述,逻辑不通之处.请理解. 如有错误 ,欢迎指出. 谢谢.          ...

随机推荐

  1. HDOJ 4923 Room and Moor

    用一个栈维护b的值,每次把一个数放到栈顶. 看栈首的值是不是大于这个数,假设大于的话将栈顶2个元素合并.b的值就是这两个栈顶元素的平均值. .. Room and Moor Time Limit: 1 ...

  2. 简洁的一键SSH脚本

    这里发一个自己图省事搞的一个批量打通SSH的脚本,可能对于好多朋友也是实用的,是expect+python的一个组合实现,原理非常easy, 使用起来也不复杂,在此还是简单贴出来说说. noscp.e ...

  3. Android 下拉刷新上拉载入 多种应用场景 超级大放送(上)

    转载请标明原文地址:http://blog.csdn.net/yalinfendou/article/details/47707017 关于Android下拉刷新上拉载入,网上的Demo太多太多了,这 ...

  4. 公告板shader

    Shader "Custom/LightPoint" { Properties { _MainTex ("Main Tex", 2D) = "whit ...

  5. 自定义验证----required属性

    1,required属性 - 表示字段不能为空(注意:只有用户单击“提交”按钮提交表单的时候,浏览器才会执行验证.目前HTML5不支持指定验证的时间,而且验证消息的样式和内容各个浏览器不大一样,不能修 ...

  6. Lumen开发:lumen源码解读之初始化(2)——门面(Facades)与数据库(db)

    版权声明:本文为博主原创文章,未经博主允许不得转载. 紧接上一篇 $app->withFacades();//为应用程序注册门面. $app->withEloquent();//为应用程序 ...

  7. Root(hdu5777+扩展欧几里得+原根)

    Root                                                                          Time Limit: 30000/1500 ...

  8. 如何更好的利用Node.js的性能极限

    通过使用非阻塞.事件驱动的I/O操作,Node.js为构建和运行大规模网络应用及服务提供了很好的平台,也受到了广泛的欢迎.其主要特性表现为能够处理庞大的并且高吞吐量的并发连接,从而构建高性能.高扩展性 ...

  9. 【BZOJ2407/4398】探险/福慧双修 最短路建模

    [BZOJ2407]探险 Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作 ...

  10. c++操作flash

    c++操作falsh,忘了原文在哪了,自己尝试了,直接贴代码 // SDK版本 //////////////////////////////////////////////////////////// ...