\(\color{#0066ff}{ 题目描述 }\)

大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

\(\color{#0066ff}{输入格式}\)

第一行为两个整数T,R。R<=\(10^9+10\),T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数N,M,见题目描述 m<=n

\(\color{#0066ff}{输出格式}\)

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

\(\color{#0066ff}{输入样例}\)

1 11
4 2

\(\color{#0066ff}{输出样例}\)

1

\(\color{#0066ff}{数据范围与提示}\)

对于100%的数据,1 < = N , M < = 10000000

\(\color{#0066ff}{ 题解 }\)

这东西看起来可能有点不好想

先考虑\([1,m!]\)的贡献,显然是\(\varphi(m!)\)

这好像不太好求。。

考虑定义

\(\begin{aligned}\varphi(n)=n*\prod_{i=1}^k\frac{p_i-1}{p_i}\end{aligned}\)

好像\(m!\)的质因子就是\(\leq m\)的所有质数啊

这样看来好像简单了不少

考虑在\([m!+1,n!]\)的部分

因为a,b互质,a+b和b一定互质(别问我为啥,gcd的东西qwq)

而且\(n!\)一定是\(m!\)的倍数,那么可以分段

每一段都是\(\varphi(m!)\)个

\(ans=\frac{n!}{m!} \varphi(m!)\)

弄个前缀乘积就行了(记录\(\varphi(i!)\)的ans,具有前缀性质)

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e7 + 10;
int pri[maxn], phi[maxn], tot, fac[maxn];
bool vis[maxn];
int mod;
LL ksm(LL x, LL y) {
LL re = 1LL;
while(y) {
if(y & 1) re = re * x % mod;
x = x * x % mod;
y >>= 1;
}
return re;
}
void predoit() {
fac[1] = 1, phi[1] = 1;
for(int i = 2; i < maxn; i++) {
if(!vis[i]) pri[++tot] = i, phi[i] = 1LL * (i - 1) * ksm(i, mod - 2) % mod;
else phi[i] = 1;
for(int j = 1; j <= tot && (LL)i * pri[j] < maxn; j++) {
vis[i * pri[j]] = true;
if(i % pri[j] == 0) break;
}
phi[i] = 1LL * phi[i] * phi[i - 1] % mod;
fac[i] = 1LL * fac[i - 1] * i % mod;
}
}
int main() {
int T = in();
mod = in();
predoit();
while(T --> 0) {
int n = in(), m = in();
printf("%lld\n", 1LL * fac[n] * phi[m] % mod);
}
return 0;
}

P2155 [SDOI2008]沙拉公主的困惑的更多相关文章

  1. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  2. 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告

    P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...

  3. [bzoj2186] [洛谷P2155] [Sdoi2008] 沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

  4. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  5. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  6. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  7. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  8. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  9. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

随机推荐

  1. 国际化---demo1---bai

    login.jsp <%@ page language="java" import="java.util.*" pageEncoding="UT ...

  2. 2015.12.24(圣诞节) 解决Oralce数据库将具有相同属性的多行合并为一行的简单方法多年想要wmsys.wm_concat

    用到Oralce10g以后增加的函数wmsys.wm_concat 例如这张表的有两个字段,要按airport_id合并成两行可用sql语句 select airport_id,   wmsys.wm ...

  3. maven依赖scope配置项讲解

    我们在使用Maven配置依赖项的时候,常常只会配置Maven的坐标以及版本信息就可以了,但我们看其他人的工程代码的时候常常会见到有个scope配置项,今天就来分别介绍下这个配置下几个类别的作用. &l ...

  4. nginx配置域名

    其他都一样,就特别说下server块的配置. server { listen 80; server_name www.icweshop.com; # 注意:这里你填写的域名必须在/etc/hosts中 ...

  5. android官方手册学习笔记

    数据存储 在提交sharedpreference 修改的时候,用apply代替commit 避免UI线程阻塞   设备兼容 系统会自动根据当前屏幕的大小等,在相应的文件夹里去找资源,如large等等 ...

  6. 主键primary key和唯一索引unique index

    1)主键一定是唯一性索引,唯一性索引并不一定就是主键. 2)主键就是能够唯一标识表中某一行的属性或属性组,一个表只能有一个主键,但可以有多个候选索引. 3)主键常常与外键构成参照完整性约束,防止出现数 ...

  7. opencv reshape函数说明

    转自http://blog.csdn.net/yang6464158/article/details/20129991 reshape有两个参数: 其中,参数:cn为新的通道数,如果cn = 0,表示 ...

  8. 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-001选择排序法(Selection sort)

    一.介绍 1.算法的时间和空间间复杂度 2.特点 Running time is insensitive to input. The process of finding the smallest i ...

  9. ZROI2018普转提day2t4

    传送门 分析 考场上暴力水过好评... 然后我的st表查询似乎是log的,然后log三方跑的比log方快,qwq. 我们发现如果一个区间的最小值就是这个区间的gcd,则这个区间合法.所以我们二分区间长 ...

  10. WOJ 10 精英选拔

    神仙dp,膜Claris 题意:给一个长度为$n$的数列,求出不超过k次交换后的最大连续子区间和. 发现交换后的最优答案一定是这样的(0和2的长度可以为0)             0        ...