首先扩O:T了一个点(因为上界松),83分。

#include <cstdio>
using namespace std; int n, p; void exgcd(int a, int p, int &b, int &x){
if (p==){
b=, x=;
return;
}
exgcd(p, a%p, b, x);
int tmp=b;
b=x;
x=tmp-a/p*x;
return;
} int main(){
scanf("%d%d", &n, &p);
int x, y;
for (int i=; i<=n; ++i){
exgcd(i, p, x, y);
printf("%d\n", (x+p)%p);
}
return ;
}

然后费马,事实证明果然更慢,上界很紧。

#include <cstdio>
using namespace std; int n, p; int expower(int a, int pow, int mod){
int ans=;
while (pow){
if (pow&) ans=1LL*ans*a%mod;
a=1LL*a*a%mod;
pow>>=;
}
return ans;
} int main(){
scanf("%d%d", &n, &p);
for (int i=; i<=n; ++i){
printf("%d\n", expower(i, p-, p));
}
return ;
}

正解:首先$1^{-1} \equiv 1 \pmod p$

我们设:$p = k\cdot i + r,~r < i,~1 < i < p$

将其放在模p意义下:$k\cdot i + r \equiv 0 \pmod p$

两边同乘i-1,r-1就会得到:

$\begin{eqnarray*} k\cdot r^{-1} + i^{-1} &\equiv& 0 &\pmod p\\ i^{-1} &\equiv& -k\cdot r^{-1} &\pmod p\\ i^{-1} &\equiv& -\left\lfloor\frac{p}{i}\right\rfloor\cdot \left(p\bmod i\right)^{-1} &\pmod p\ \end{eqnarray*}$

于是核心代码就一行:

A[i] = -(p / i) * A[p % i];

我的代码:

注意:有可能是负数

#include <cstdio>
using namespace std; const int maxn=;
int n, p, a[maxn]; int main(){
scanf("%d%d", &n, &p);
a[]=;
printf("%d\n", a[]);
for (int i=; i<=n; ++i){
a[i]=(1LL*-(p/i)*a[p%i])%p;
a[i]=(a[i]+p)%p;
printf("%d\n", a[i]);
}
return ;
}

luogu P3811线性求逆元的更多相关文章

  1. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

  2. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. 【数学/扩展欧几里得/线性求逆元】[Sdoi2008]沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

  4. [uva11174]村民排队 递推+组合数+线性求逆元

    n(n<=40000)个村民排成一列,每个人不能排在自己父亲的前面,有些人的父亲不一定在.问有多少种方案. 父子关系组成一个森林,加一个虚拟根rt,转化成一棵树. 假设f[i]表示以i为根的子树 ...

  5. 线性筛prime/phi/miu/求逆元模板

    这绿题贼水...... 原理我不讲了,随便拿张草稿纸推一下就明白了. #include <cstdio> using namespace std; ; int su[N],ans,top; ...

  6. 【bzoj2839】【集合计数】容斥原理+线性求阶乘逆元小技巧

    (上不了p站我要死了,侵权度娘背锅) Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取 ...

  7. luogu P3811 【模板】乘法逆元

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

  8. 线性求所有数模p的乘法逆元

    推理: 假如当前计算的是x在%p意义下的逆元,设$p=kx+y$,则 $\Large kx+y\equiv 0(mod\ p)$ 两边同时乘上$x^{-1}y^{-1}$(这里代表逆元) 则方程变为$ ...

  9. luogu P4238 多项式求逆 (模板题、FFT)

    手动博客搬家: 本文发表于20181125 13:21:46, 原地址https://blog.csdn.net/suncongbo/article/details/84485718 题目链接: ht ...

随机推荐

  1. Day2-VIM(六): 恢复

    恢复在VIM里比较简单,不过想要具体恢复到某个时间段很难 就我的经验而言,有时候使用恢复还不如删了重写 这里我们来讲讲恢复.撤销和重复命令的使用 u 撤消上次命令 U 恢复整行 ctrl+r 重做 . ...

  2. mybatis association表关联与rowbounds共同使用时的异常及其解决方案

    按照mybatis手册中所说的,association有两种实现方式,嵌套查询和嵌套结果映射.如手册中所述,select方式会带来N+1次查询的问题,考虑到效率问题的话建议使用嵌套结果映射.但是在结合 ...

  3. Regexp:正则表达式应用——实例应用

    ylbtech-Regexp:正则表达式应用——实例应用 1. 实例应用返回顶部 1. 1.验证用户名和密码:("^[a-zA-Z]\w{5,15}$")正确格式:"[A ...

  4. Oracle 12c 搭建学习

    Oracle 12c 搭建学习 Vm workstaton10 安装linux 6.4 安装oracle12c Oracle 12c只支持64位系统 1 环境检查 [root@rac1 ~]# gre ...

  5. Java多线程中的常用方法

    本文将带你讲诉Java多线程中的常用方法   Java多线程中的常用方法有如下几个 start,run,sleep,wait,notify,notifyAll,join,isAlive,current ...

  6. PHP类(三)-类的封装

    设置私有成员 使用private关键字来设置私有成员,完成对成员的封装,封装后的成员在对象的外部不能被访问,如果访问会出现错误,在对象的内部能访问被封装的成员属性和方法. <?php class ...

  7. Java中弱引用、软引用、虚引用及强引用的区别

    Java中弱引用VS软引用 Java中有如下四种类型的引用: 强引用(Strong Reference) 弱引用(WeakReference) 软引用(SoftReference) 虚引用(Phant ...

  8. Laravel 在 with 查询中只查询个别字段

    在使用 Laravel 的关联查询中,我们经常使用 with 方法来避免 N+1 查询,但是 with 会将目标关联的所有字段全部查询出来,对于有强迫症的我们来说,当然是不允许的. 这时候我们可以使用 ...

  9. VS2008 C++ 项目怎样添加“依赖”、“库目录”和“包含目录”

    随笔 - 79, 文章 - 0, 评论 - 7, 引用 - 0 1. 添加编译所需要(依赖)的 lib 文件 [解决方案资源管理器]“项目->属性->配置属性->连接器->输入 ...

  10. maven依赖scope配置项讲解

    我们在使用Maven配置依赖项的时候,常常只会配置Maven的坐标以及版本信息就可以了,但我们看其他人的工程代码的时候常常会见到有个scope配置项,今天就来分别介绍下这个配置下几个类别的作用. &l ...