首先扩O:T了一个点(因为上界松),83分。

#include <cstdio>
using namespace std; int n, p; void exgcd(int a, int p, int &b, int &x){
if (p==){
b=, x=;
return;
}
exgcd(p, a%p, b, x);
int tmp=b;
b=x;
x=tmp-a/p*x;
return;
} int main(){
scanf("%d%d", &n, &p);
int x, y;
for (int i=; i<=n; ++i){
exgcd(i, p, x, y);
printf("%d\n", (x+p)%p);
}
return ;
}

然后费马,事实证明果然更慢,上界很紧。

#include <cstdio>
using namespace std; int n, p; int expower(int a, int pow, int mod){
int ans=;
while (pow){
if (pow&) ans=1LL*ans*a%mod;
a=1LL*a*a%mod;
pow>>=;
}
return ans;
} int main(){
scanf("%d%d", &n, &p);
for (int i=; i<=n; ++i){
printf("%d\n", expower(i, p-, p));
}
return ;
}

正解:首先$1^{-1} \equiv 1 \pmod p$

我们设:$p = k\cdot i + r,~r < i,~1 < i < p$

将其放在模p意义下:$k\cdot i + r \equiv 0 \pmod p$

两边同乘i-1,r-1就会得到:

$\begin{eqnarray*} k\cdot r^{-1} + i^{-1} &\equiv& 0 &\pmod p\\ i^{-1} &\equiv& -k\cdot r^{-1} &\pmod p\\ i^{-1} &\equiv& -\left\lfloor\frac{p}{i}\right\rfloor\cdot \left(p\bmod i\right)^{-1} &\pmod p\ \end{eqnarray*}$

于是核心代码就一行:

A[i] = -(p / i) * A[p % i];

我的代码:

注意:有可能是负数

#include <cstdio>
using namespace std; const int maxn=;
int n, p, a[maxn]; int main(){
scanf("%d%d", &n, &p);
a[]=;
printf("%d\n", a[]);
for (int i=; i<=n; ++i){
a[i]=(1LL*-(p/i)*a[p%i])%p;
a[i]=(a[i]+p)%p;
printf("%d\n", a[i]);
}
return ;
}

luogu P3811线性求逆元的更多相关文章

  1. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

  2. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. 【数学/扩展欧几里得/线性求逆元】[Sdoi2008]沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

  4. [uva11174]村民排队 递推+组合数+线性求逆元

    n(n<=40000)个村民排成一列,每个人不能排在自己父亲的前面,有些人的父亲不一定在.问有多少种方案. 父子关系组成一个森林,加一个虚拟根rt,转化成一棵树. 假设f[i]表示以i为根的子树 ...

  5. 线性筛prime/phi/miu/求逆元模板

    这绿题贼水...... 原理我不讲了,随便拿张草稿纸推一下就明白了. #include <cstdio> using namespace std; ; int su[N],ans,top; ...

  6. 【bzoj2839】【集合计数】容斥原理+线性求阶乘逆元小技巧

    (上不了p站我要死了,侵权度娘背锅) Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取 ...

  7. luogu P3811 【模板】乘法逆元

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

  8. 线性求所有数模p的乘法逆元

    推理: 假如当前计算的是x在%p意义下的逆元,设$p=kx+y$,则 $\Large kx+y\equiv 0(mod\ p)$ 两边同时乘上$x^{-1}y^{-1}$(这里代表逆元) 则方程变为$ ...

  9. luogu P4238 多项式求逆 (模板题、FFT)

    手动博客搬家: 本文发表于20181125 13:21:46, 原地址https://blog.csdn.net/suncongbo/article/details/84485718 题目链接: ht ...

随机推荐

  1. 使用内省的方式操作JavaBean

    import java.beans.BeanInfo; import java.beans.Introspector; import java.beans.PropertyDescriptor; im ...

  2. html5 日常小结

    HTML5新标签汇总 1.  html5新的 (input type=类型) 元素 <input type="number" name="quantity" ...

  3. Oracle RMAN 学习:演练进阶篇

    Oracle RMAN 学习:演练进阶篇 5 Rman备份演练进阶篇 5.1 是否选择增量备份 Backup命令生成的备份集中只备份了那些使用了的数据块,备份集实际大小已经较目标数据库的数据文件小了很 ...

  4. Ettercap进行arp毒化

    攻击者IP:192.168.220.152 受害者IP:192.168.220.151 网关:192.168.220.2 修改DNS文件 ┌─[root@sch01ar]─[~] └──╼ #vim ...

  5. 2015.1.4 判断鼠标点击DataGridView的第几行还是空白处

    public int GetRowIndexAt(int mouseLocation_Y) { if (dvaw.FirstDisplayedScrollingRowIndex < 0) { r ...

  6. 如何修改AWR的retention,interval

    检查AWR当前设置: SQL> select * from dba_hist_wr_control; DBID SNAP_INTERVAL RETENTION TOPNSQL --------- ...

  7. Samba服务学习报错总结

    1 2 3 4 5 此文献来至百度文库 http://wenku.baidu.com/link?url=hkHembjXcjoYRU9ky34a46Lzv5SAEutwa0v1_F8INQsdg_KK ...

  8. div盒子模型

    <style type="text/css"> div{ width:300px; height:300px; background:green; margin:10p ...

  9. os模块 os.stat('path/filename') os.path.dirname(path) os.path.exists(path)  os.path.join(path1[, path2[, ...]])

    提供对操作系统进行调用的接口 os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname")  改变当前脚本工作目录:相当于 ...

  10. JAVA语法规则总结

    单继承多实现 抽象类  抽象方法 使用关键字:abstract修饰的方法就是抽象方法; 抽象方法的形式:只有方法的声明,没有方法体; 抽象方法一般存在于父类中,相当于强制要求子类必须重写该方法,相当于 ...