C. Kuro and Walking Route
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Kuro is living in a country called Uberland, consisting of nn towns, numbered from 11 to nn, and n−1n−1 bidirectional roads connecting these towns. It is possible to reach each town from any other. Each road connects two towns aa and bb. Kuro loves walking and he is planning to take a walking marathon, in which he will choose a pair of towns (u,v)(u,v) (u≠vu≠v) and walk from uuusing the shortest path to vv (note that (u,v)(u,v) is considered to be different from (v,u)(v,u)).

Oddly, there are 2 special towns in Uberland named Flowrisa (denoted with the index xx) and Beetopia (denoted with the index yy). Flowrisa is a town where there are many strong-scent flowers, and Beetopia is another town where many bees live. In particular, Kuro will avoid any pair of towns (u,v)(u,v) if on the path from uu to vv, he reaches Beetopia after he reached Flowrisa, since the bees will be attracted with the flower smell on Kuro’s body and sting him.

Kuro wants to know how many pair of city (u,v)(u,v) he can take as his route. Since he’s not really bright, he asked you to help him with this problem.

Input

The first line contains three integers nn, xx and yy (1≤n≤3⋅105,1≤x,y≤n1≤n≤3⋅105,1≤x,y≤n, x≠yx≠y) - the number of towns, index of the town Flowrisa and index of the town Beetopia, respectively.

n−1n−1 lines follow, each line contains two integers aa and bb (1≤a,b≤n1≤a,b≤n, a≠ba≠b), describes a road connecting two towns aa and bb.

It is guaranteed that from each town, we can reach every other town in the city using the given roads. That is, the given map of towns and roads is a tree.

Output

A single integer resembles the number of pair of towns (u,v)(u,v) that Kuro can use as his walking route.

Examples
input

Copy
3 1 3
1 2
2 3
output

Copy
5
input

Copy
3 1 3
1 2
1 3
output

Copy
4
Note

On the first example, Kuro can choose these pairs:

  • (1,2)(1,2): his route would be 1→21→2,
  • (2,3)(2,3): his route would be 2→32→3,
  • (3,2)(3,2): his route would be 3→23→2,
  • (2,1)(2,1): his route would be 2→12→1,
  • (3,1)(3,1): his route would be 3→2→13→2→1.

Kuro can't choose pair (1,3)(1,3) since his walking route would be 1→2→31→2→3, in which Kuro visits town 11 (Flowrisa) and then visits town 33 (Beetopia), which is not allowed (note that pair (3,1)(3,1) is still allowed because although Kuro visited Flowrisa and Beetopia, he did not visit them in that order).

On the second example, Kuro can choose the following pairs:

  • (1,2)(1,2): his route would be 1→21→2,
  • (2,1)(2,1): his route would be 2→12→1,
  • (3,2)(3,2): his route would be 3→1→23→1→2,
  • (3,1)(3,1): his route would be 3→13→1.
#include<cmath>
#include<queue>
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=3e5+;
vector<int> g[N];
int num[N];
int par[N];
int n,x,y;
int dfs(int u,int fa){
par[u]=fa;
int cnt=;
for(int v:g[u]){
if(v!=fa){
cnt+=dfs(v,u);
}
}
return num[u]=cnt+;
}
int main() {
scanf("%d%d%d",&n,&x,&y);
for(int i=;i<n-;i++){
int u,v;
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}
dfs(x,-);
long long ans=;
int m=y;
while(par[m] !=x){
m=par[m];
}
ans=(long long )n*(n-);
ans-=(long long )num[y]*(n-num[m]);
printf("%lld\n",ans);
return ;
}

code forces 979C的更多相关文章

  1. 思维题--code forces round# 551 div.2

    思维题--code forces round# 551 div.2 题目 D. Serval and Rooted Tree time limit per test 2 seconds memory ...

  2. Code Forces 796C Bank Hacking(贪心)

    Code Forces 796C Bank Hacking 题目大意 给一棵树,有\(n\)个点,\(n-1\)条边,现在让你决策出一个点作为起点,去掉这个点,然后这个点连接的所有点权值+=1,然后再 ...

  3. Code Forces 833 A The Meaningless Game(思维,数学)

    Code Forces 833 A The Meaningless Game 题目大意 有两个人玩游戏,每轮给出一个自然数k,赢得人乘k^2,输得人乘k,给出最后两个人的分数,问两个人能否达到这个分数 ...

  4. Code Forces 543A Writing Code

    题目描述 Programmers working on a large project have just received a task to write exactly mm lines of c ...

  5. code forces 383 Arpa's loud Owf and Mehrdad's evil plan(有向图最小环)

    Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...

  6. code forces 382 D Taxes(数论--哥德巴赫猜想)

    Taxes time limit per test 2 seconds memory limit per test 256 megabytes input standard input output ...

  7. code forces Watermelon

    /* * Watermelon.cpp * * Created on: 2013-10-8 * Author: wangzhu */ /** * 若n是偶数,且大于2,则输出YES, * 否则输出NO ...

  8. code forces Jeff and Periods

    /* * c.cpp * * Created on: 2013-10-7 * Author: wangzhu */ #include<cstdio> #include<iostrea ...

  9. Code Forces Gym 100971D Laying Cables(单调栈)

    D - Laying Cables Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. GUI测试问题汇总

    1.ajax实现的页面元素定位问题 最近在做项目的时候遇到一个问题,通过xpath定位到元素后做一个循环操作,第一循环可以正常执行,第二次循环后就报错,错误信息:Message: The elemen ...

  2. JQuery制作网页—— 第三章 JavaScript操作DOM对象

    1. DOM:Document Object Model(文档对象模型):          DOM操作:                   ●DOM是Document Object Model的缩 ...

  3. nginx虚拟主机搭建

    nginx [engine x]是 Igor Sysoev 编写的一个 HTTP 和反向代理服务器,另外它也可以 作为邮件代理服务器. 它已经在众多流量很大的俄罗斯网站上使用了很长时间,这些网站包括 ...

  4. C++基础 inline 默认参数 函数占位参数 函数重载

    1. inline内联函数 内联函数用于替换宏, 实例: 其中宏和 ++ 连用有副作用. #include "iostream" using namespace std; #def ...

  5. Smail 中的一些点

    smali中所有操作都需要经过寄存器, 本地寄存器以v开头, 参数寄存器以p开头, 非static方法中p0是this 没有-object后缀的操作指令表示操作的对象是基本类型 invoke-dire ...

  6. android apk瘦身之 图片压缩 tinypng

    参考地址: http://blog.csdn.net/jy692405180/article/details/52409369 http://www.tuicool.com/articles/BraI ...

  7. 关于update 表名 set 字段1 = 值1 and 字段2 = 值2的执行结果说明

    技术交流群: 233513714 如果执行了以下的语句,则brand等于‘OPPO’条件所对应的数据不会做改变,但是sequence_brand列除brand = 'OPPO'之外的所有数据都会变为0 ...

  8. AD RMS总结

    AD RMS 认识篇 AD RMS(Active Directory Right Mangement Servic)活动目录权限服务. 首先我通过了解AD RMS的用途去深入学习AD RMS.在过去用 ...

  9. 从事IT业一个8年老兵转行前的自我总结1——初爻

    现在,本人已离开这个呆了8年的软件行业了.回想自己从半路出家,从实施开始做起,最终在一家外企做项目经理PM结束了自己的软件职业生涯.从一张白纸的自学开始,做过项目实施,客户培训,拿过需求,开发,架构设 ...

  10. 《算法》C++代码 Dijkstra

    单源最短路,复杂度是O(N²),堆优化的是O(NlogN).基本思想是贪心,每次都加入一个当前最近的点,可以证明每次当时最近的点就是当前最短的路径.因此,所有点都加入之后,起点到所有点的最短路径就都求 ...