hdu6053(莫比乌斯+容斥+分块)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6053
题意: 给出一个含 n 个元素的 a 数组, 求 bi <= ai 且 gcd(b1, ..., bn) >= 2 的 b 数组的数目;
思路: 首先想到的方法是枚举 gcd, 对于每个 gcd x 的情况, 将所有 bi / x 连乘, 然后将所有 gcd 的情况累加一下就能的到答案了 .
然而其时间复杂度为 O(t * min(a) * n), 铁定 tle;
对于后面连乘部分是可以优化一下的 . 把 a 数组元素装到一个桶里面, 然后枚举 gcd 时按照 ai / gcd 的值分下块,
对于区间 [gcd * k, gcd * (k + 1 ) - 1], 显然区间内的值除 gcd 的商都为 k, 若 a 中有 cnt 个元素处于该区间, 那么该块内的 b 数组元素有 k^cnt 种选择方案,
再将不同块的方案数乘起来就是当前 gcd 对答案的贡献了 .
然而上面还会出现重复计算(个人感觉这个有点难理解):
对于不能分解成不同素数乘积形式的 gcd, 在第一次计算其中多次出现的素因子作 gcd 时已经计算过了, 所以不累加到答案上 .
对于能分解成不同素数乘积形式的 gcd, 其中重复计算的我们可以用容斥去重, 奇加偶减 .
可以发现这和 moblus 函数很相近, 对与不能分解成不同素数乘积形式的数, 其 mu 值为 0, 对于能分解成不同素数乘积形式的数, 若其长度为奇数, mu 值为 -1, 长度为偶数则 mu 值为 1, 恰好与容斥的奇加偶减相反, 所以给 mu 加个负号即可 .
代码:
#include <iostream>
#include <stdio.h>
#include <string.h>
#define ll long long
using namespace std; const int mod = 1e9 + ;
const int MAXN = 1e5 + ; bool check[MAXN];
int prime[MAXN], mu[MAXN], vis[MAXN << ]; void Moblus(void){
memset(check, false, sizeof(check));
int tot = ;
mu[] = ;
for(int i = ; i < MAXN; i++){
if(!check[i]){
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot && i * prime[j] < MAXN; j++){
check[i * prime[j]] = true;
if(i % prime[j] == ){
mu[i * prime[j]] = ;
break;
}else mu[i * prime[j]] = -mu[i];
}
}
} ll get_pow(ll x, int n){
ll ans = ;
while(n){
if(n & ) ans = ans * x % mod;
x = x * x % mod;
n >>= ;
}
return ans;
} int main(void){
Moblus();
int t, n, x;
scanf("%d", &t);
for(int cas = ; cas <= t; cas++){
memset(vis, , sizeof(vis));
int mi = MAXN, mx = - MAXN;
scanf("%d", &n);
for(int i = ; i < n; i++){
scanf("%d", &x);
vis[x] += ;
mi = min(mi, x);
mx = max(mx, x);
}
for(int i = ; i < (MAXN << ); i++){//注意范围
vis[i] += vis[i - ];
}
ll ans = ;
for(int i = ; i <= mi; i++){
ll cnt = ;
if(mu[i]){
for(int j = i; j <= mx; j += i){
cnt = (cnt * get_pow((ll)(j / i), vis[j + i - ] - vis[j - ])) % mod;
}
}
ans = (ans - cnt * mu[i] + mod) % mod;
}
printf("Case #%d: %lld\n", cas, ans);
}
return ;
}
hdu6053(莫比乌斯+容斥+分块)的更多相关文章
- [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]
题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...
- CF(439E - Devu and Birthday Celebration)莫比乌斯容斥
题意:将n个糖果插入f-1个挡板分成f分(a1,a2,a3...af). 问有多少种分法能够使得gcd(a1,a2,a3...af)=1; 解法.莫比乌斯容斥,首先按1为单位分,这时候有C(n-1,f ...
- HihoCoder - 1867: GCD (莫比乌斯容斥)
Sample Input 6 1 6 2 5 3 4 Sample Output 10 You are given a {1, 2, ..., n}-permutation a[1], a[2], . ...
- CodeForces - 803F: Coprime Subsequences(莫比乌斯&容斥)
Let's call a non-empty sequence of positive integers a1, a2... ak coprime if the greatest common div ...
- [Hdu-6053] TrickGCD[容斥,前缀和]
Online Judge:Hdu6053 Label:容斥,前缀和 题面: 题目描述 给你一个长度为\(N\)的序列A,现在让你构造一个长度同样为\(N\)的序列B,并满足如下条件,问有多少种方案数? ...
- BZOJ2440(全然平方数)二分+莫比乌斯容斥
题意:全然平方数是指含有平方数因子的数.求第ki个非全然平方数. 解法:比較明显的二分,getsum(int middle)求1-middle有多少个非全然平方数,然后二分.求1-middle的非全然 ...
- CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)
Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!&qu ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
随机推荐
- WCF寄宿(Host)之自我寄宿(Self-Hosting)简单实例【Windows应用程序宿主】
前言: 以各种应用程序做自我寄宿的宿主原理方法大同小异,故:这儿直接上案例! 步骤一:创建服务契约和服务 1.新建解决方案:添加WCF服务库项目. 2.为了演示,我把自动生成的接口以及实现接口的类删 ...
- Mex混合编程专题二:MEX Hello Word
VS2010中写mex入门级工程代码 接着上一篇文章的工程继续,如下代码: #include "stdafx.h" #include "mextest.h" # ...
- Java中数学计算的相关方法
1:Math类 2.BigInteger类 3.BigDecimal类 BigInteger bi = new BigInteger("12433241123"); BigDec ...
- 股神小L
题解 贪心 若当前手中还持有股,则一定会卖出去. 否则,考虑之前卖出的最便宜的股,若售价比当前的股高,就买下这个股,否则我们就把之前卖出的最便宜的股改为买入,这样一定会有股,然后再把这个股卖出即可. ...
- Linux下eclipse及mysql安装,c++访问mysql数据库
这两天在学习linux下用c++访问mysql,碰到一堆问题,记录一下. 1.mysql安装: 公司的电脑是64位的,安装的是64为的RHEL4,安装如下三个包: MySQL-client-5.1.4 ...
- 系统原生文件MD5值获取
windows: certutil -hashfile filePath MD5 certutil -hashfile filePath SHA1 Linux md5sum filePath s ...
- vijos1782:借教室
描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然希望 ...
- web攻击之八:溢出攻击(nginx服务器防sql注入/溢出攻击/spam及禁User-agents)
一.什么是溢出攻击 首先, 溢出,通俗的讲就是意外数据的重新写入,就像装满了水的水桶,继续装水就会溢出,而溢出攻击就是,攻击者可以控制溢出的代码,如果程序的对象是内核级别的,如dll.sys文件等,就 ...
- MySQL(介绍1)
数据库(Database)是按照数据结构来组织.存储和管理数据的仓库: 也可以将数据存储在文件中,但是在文件中读写数据速度相对较慢. 在WEB应用方面MySQL是最好的RDBMS(Relational ...
- 想要table表格垂直滚动,加点CSS即可
<style> /*设置 tbody高度大于400px时 出现滚动条*/ table tbody { display: block; height: 400px; overflow-y: ...