题目链接

BZOJ3236

题解

没想到这题真的是如此暴力

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 100005,maxm = 3000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,a[maxm],b[maxm],bi,B,tot,ans1[maxm],ans2[maxm];
struct Que{int l,r,a,b,bl,id;}q[maxm];
inline bool operator <(const Que& a,const Que& b){
return a.bl == b.bl ? a.r < b.r : a.l < b.l;
}
int getn(int x){return lower_bound(b + 1,b + 1 + tot,x) - b;}
int bac[maxm];
struct BIT{
int s[maxm];
void add(int u,int v){while (u <= tot) s[u] += v,u += lbt(u);}
int query(int u){int re = 0; while (u) re += s[u],u -= lbt(u); return re;}
int sum(int l,int r){return query(r) - query(l - 1);}
}T1,T2;
void solve(){
sort(q + 1,q + 1 + m);
int L = q[1].l,R = q[1].r;
for (int i = L; i <= R; i++){
T1.add(a[i],1);
if (!bac[a[i]]) T2.add(a[i],1);
bac[a[i]]++;
}
ans1[q[1].id] = T1.sum(q[1].a,q[1].b);
ans2[q[1].id] = T2.sum(q[1].a,q[1].b);
for (int i = 2; i <= m; i++){
while (L != q[i].l || R != q[i].r){
if (L < q[i].l){
bac[a[L]]--;
T1.add(a[L],-1);
if (!bac[a[L]]) T2.add(a[L],-1);
L++;
}
if (L > q[i].l){
L--;
T1.add(a[L],1);
if (!bac[a[L]]) T2.add(a[L],1);
bac[a[L]]++;
}
if (R < q[i].r){
R++;
T1.add(a[R],1);
if (!bac[a[R]]) T2.add(a[R],1);
bac[a[R]]++;
}
if (R > q[i].r){
bac[a[R]]--;
T1.add(a[R],-1);
if (!bac[a[R]]) T2.add(a[R],-1);
R--;
}
}
ans1[q[i].id] = T1.sum(q[i].a,q[i].b);
ans2[q[i].id] = T2.sum(q[i].a,q[i].b);
}
for (int i = 1; i <= m; i++)
printf("%d %d\n",ans1[i],ans2[i]);
}
int main(){
n = read(); m = read(); B = (int)sqrt(n) + 1;
REP(i,n) a[i] = b[++bi] = read();
REP(i,m){
q[i].l = read(); q[i].r = read(); q[i].bl = q[i].l / B;
b[++bi] = q[i].a = read();
b[++bi] = q[i].b = read();
q[i].id = i;
}
sort(b + 1,b + 1 + bi); tot = 1;
for (int i = 2; i <= bi; i++) if (b[i] != b[tot]) b[++tot] = b[i];
for (int i = 1; i <= n; i++) a[i] = getn(a[i]);
for (int i = 1; i <= m; i++) q[i].a = getn(q[i].a),q[i].b = getn(q[i].b);
solve();
return 0;
}

BZOJ3236 [Ahoi2013]作业 【莫队 + 树状数组】的更多相关文章

  1. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  2. COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)

    题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...

  3. BZOJ 3236: [Ahoi2013]作业(莫队+树状数组)

    传送门 解题思路 莫队+树状数组.把求\([a,b]\)搞成前缀和形式,剩下的比较裸吧,用\(cnt\)记一下数字出现次数.时间复杂度\(O(msqrt(n)log(n)\),莫名其妙过了. 代码 # ...

  4. [AHOI2013]作业 莫队 树状数组

    #include<cmath> #include<cstdio> #include<algorithm> #include<string> #inclu ...

  5. bzoj3236 作业 莫队+树状数组

    莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...

  6. BZOJ 3236 AHOI 2013 作业 莫队+树状数组

    BZOJ 3236 AHOI 2013 作业 内存限制:512 MiB 时间限制:10000 ms 标准输入输出     题目类型:传统 评测方式:文本比较 题目大意: 此时己是凌晨两点,刚刚做了Co ...

  7. BZOJ_3289_Mato的文件管理_莫队+树状数组

    BZOJ_3289_Mato的文件管理_莫队+树状数组 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号 .为了防止他人 ...

  8. bzoj 3289: Mato的文件管理 莫队+树状数组

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...

  9. 51nod 1290 Counting Diff Pairs | 莫队 树状数组

    51nod 1290 Counting Diff Pairs | 莫队 树状数组 题面 一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[ ...

  10. 【BZOJ3460】Jc的宿舍(树上莫队+树状数组)

    点此看题面 大致题意: 一棵树,每个节点有一个人,他打水需要\(T_i\)的时间,每次询问两点之间所有人去打水的最小等待时间. 伪·强制在线 这题看似强制在线,但实际上,\(pre\ mod\ 2\) ...

随机推荐

  1. php - 从数据库导出百万级数据(CSV文件)

    将数据库连接信息.查询条件.标题信息替换为真实数据即可使用. <?php set_time_limit(0); ini_set('memory_limit', '128M'); $fileNam ...

  2. mysql悲观锁与乐观锁

    简介 数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性. 用途 乐观锁和悲观锁是并发控制主要采用的技术手段.无论是悲观 ...

  3. &、|、~与&&、||、! 谬误

    按位运算符(&.|.~)的操作是被默认为一个二进制的位序列,分别对其中的每个位进行操作. 逻辑运算符(&&.||.!)将操作数当成非真及假,非假及真.通常就是将0当成假,非0即 ...

  4. 基于HDP版本的YDB安装部署(转)

    第三章 YDB依赖环境准备 一.硬件环境 硬件如何搭配,能做到比较高的性价比,不存在短板.合理的硬件搭配,对系统的稳定性也很关键. 1.CPU不是核数越高越好,性价比才是关键. 经常遇到很多的企业级客 ...

  5. Android面试收集录17 Android进程优先级

    在安卓系统中:当系统内存不足时,Android系统将根据进程的优先级选择杀死一些不太重要的进程,优先级低的先杀死.进程优先级从高到低如下. 前台进程 处于正在与用户交互的activity 与前台act ...

  6. Windows GitLab使用全过程

    1.首先安装Git 1.1.下载网站: https://git-for-windows.github.io/ 1.2.安装Git参考网站 http://blog.csdn.net/u012614287 ...

  7. PHP.28-TP框架商城应用实例-后台5-多表操作-商品表与品牌表

    表与表之间的关系:1:1 1:多 多:多 功能需求决定表关系 此处的表关系为:品牌表:商品表=1:多 1.首先在表结构上关联,在多的表(商品表)添加一个字段,关联一的表(品牌表)的ID(主键) 添加字 ...

  8. 集合源码分析之 HashSet

    一 知识准备 HashSet 是Set接口的实现类,Set存在的最大意义区别于List就是,Set中存放的元素不能够重复,就是不能够有两个相同的元素存放在Set中,那么怎样的两个元素才算是相同的,这里 ...

  9. 10,python开发之virtualenv与virtualenvwrapper

      在使用 Python 开发的过程中,工程一多,难免会碰到不同的工程依赖不同版本的库的问题: 亦或者是在开发过程中不想让物理环境里充斥各种各样的库,引发未来的依赖灾难. 此时,我们需要对于不同的工程 ...

  10. Android Studio自定义模板代码

    http://blog.csdn.net/h183288132/article/details/51916399 生成模板看上面这个博客就可以了,不再重复制造轮子. 不过需要补充的是: 还应该有下面的 ...