POJ 1183 反正切函数的应用
Description
(其中0 <= x <= 1) 公式(1)
使用反正切函数计算PI是一种常用的方法。例如,最简单的计算PI的方法:
PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...) 公式(2)
然而,这种方法的效率很低,但我们可以根据角度和的正切函数公式:
tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)] 公式(3)
通过简单的变换得到:
arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4)
利用这个公式,令p=1/2,q=1/3,则(p+q)/(1-pq)=1,有
arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1)
使用1/2和1/3的反正切来计算arctan(1),速度就快多了。
我们将公式(4)写成如下形式
arctan(1/a)=arctan(1/b)+arctan(1/c)
其中a,b和c均为正整数。
我们的问题是:对于每一个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于任意的a都存在整数解。如果有多个解,要求你给出b+c最小的解。
Input
Output
#include <stdio.h>
#include <string.h> int main()
{
long long a, m, n, dd;
while(scanf("%lld", &a)!=EOF)
{
dd=a*a+1; for(m=a; m>=1; m--)
{
if(dd%m==0)
{
break;
}
}
n=dd/m;
printf("%ld\n", 2*a+m+n );
}
return 0;
}
这是一位同胞的解释!可供参考!
POJ 1183 反正切函数的应用的更多相关文章
- Openjudge/Poj 1183 反正切函数的应用
1.链接地址: http://bailian.openjudge.cn/practice/1183 http://poj.org/problem?id=1183 2.题目: 总时间限制: 1000ms ...
- POJ 1183 反正切函数的应用(数学代换,基本不等式)
题目链接:http://poj.org/problem?id=1183 这道题关键在于数学式子的推导,由题目有1/a=(1/b+1/c)/(1-1/(b*c))---------->a=(b*c ...
- Poj 4227 反正切函数的应用
Description 反正切函数可展开成无穷级数,有例如以下公式 (当中0 <= x <= 1) 公式(1) 使用反正切函数计算PI是一种经常使用的方法.比如,最简单的计算PI的方法: ...
- POJ 1183
#include<iostream> #include<stdio.h> using namespace std; int main() { //freopen("a ...
- POJ 题目分类(转载)
Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...
- (转)POJ题目分类
初期:一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. ...
- poj分类
初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. ( ...
- poj 题目分类(1)
poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...
- POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)
本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...
随机推荐
- 记录:Android中StackOverflow的问题
最近新作的项目上线,出现了一个让人抓狂的问题.在此记录一下! 现在的项目中,制作了一个界面非常复杂.整个结构是最外层一个Layout,封装了Menu键吊起的菜单,整个内容使用一个FrameLayout ...
- 1045. Favorite Color Stripe (30) -LCS同意元素反复
题目例如以下: Eva is trying to make her own color stripe out of a given one. She would like to keep only h ...
- Ubuntu14下Hadoop开发<1> 基础环境安装
准备了一台淘汰的笔记本.单核CPU.3G内存.160G硬盘:准备一个2G的U盘 在官网下载了64位的14.04版本号(麒麟)的ISO.下载UNetbootin(Ubuntu专用U盘安装工具) 使用UN ...
- jquery的find()
jQuery 遍历 - find() 方法 jQuery 遍历参考手册 实例 搜索所有段落中的后代 span 元素,并将其颜色设置为红色: $("p").find("sp ...
- HDU 5901 Count primes (2016 acm 沈阳网络赛)
原题地址:http://acm.hdu.edu.cn/showproblem.php?pid=5901 题意:输入n,输出n以内质数个数 模板题,模板我看不懂,只是存代码用. 官方题解链接:https ...
- 批处理--md5校检
@echo off rem 获取文件xx.zip的MD5 for /f "delims=" %%i in ('md5.exe xx.zip') do (set md5_var=%% ...
- 安装android Studio和运行react native项目(基础篇)
ANDROID_HOME环境变量 确保ANDROID_HOME环境变量正确地指向了你安装的Android SDK的路径. 打开控制面板 -> 系统和安全 -> 系统 -> 高级系统设 ...
- CF:Problem 426B - Sereja and Mirroring 二分或者分治
这题解法怎么说呢,由于我是把行数逐步除以2暴力得到的答案,所以有点二分的意思,可是昨天琦神说是有点像分治的意思.反正总的来说:就是从大逐步细化找到最优答案. 可是昨晚傻B了.靠! 多写了点东西,然后就 ...
- task1-9
今天完成: Task1.参考修真院线下报名贴(学习资料-线下报名-北京报名)中报名的格式,整理出业务模型,确定需要几个对象,每个对象的属性是什么,对象和对象之间的关系是一对一,还是一对多. [参考资料 ...
- 1、Codevs 必做:2833、1002、1003、2627、2599
2833 奇怪的梦境 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description Aiden陷入了一个奇怪的梦境:他被困 ...